x نى يېشىش
x=\frac{1}{1-2y}
y\neq \frac{1}{2}
y نى يېشىش
y=\frac{1}{2}-\frac{1}{2x}
x\neq 0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x-2xy=1
ھەر ئىككى تەرەپتىن 2xy نى ئېلىڭ.
\left(1-2y\right)x=1
x نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(1-2y\right)x}{1-2y}=\frac{1}{1-2y}
ھەر ئىككى تەرەپنى -2y+1 گە بۆلۈڭ.
x=\frac{1}{1-2y}
-2y+1 گە بۆلگەندە -2y+1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
2xy+1=x
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2xy=x-1
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
\frac{2xy}{2x}=\frac{x-1}{2x}
ھەر ئىككى تەرەپنى 2x گە بۆلۈڭ.
y=\frac{x-1}{2x}
2x گە بۆلگەندە 2x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
y=\frac{1}{2}-\frac{1}{2x}
x-1 نى 2x كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}