ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+3x^{2}=0
3x^{2} نى ھەر ئىككى تەرەپكە قوشۇڭ.
x\left(1+3x\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=-\frac{1}{3}
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 1+3x=0 نى يېشىڭ.
x+3x^{2}=0
3x^{2} نى ھەر ئىككى تەرەپكە قوشۇڭ.
3x^{2}+x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-1±\sqrt{1^{2}}}{2\times 3}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 3 نى a گە، 1 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±1}{2\times 3}
1^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-1±1}{6}
2 نى 3 كە كۆپەيتىڭ.
x=\frac{0}{6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±1}{6} نى يېشىڭ. -1 نى 1 گە قوشۇڭ.
x=0
0 نى 6 كە بۆلۈڭ.
x=-\frac{2}{6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±1}{6} نى يېشىڭ. -1 دىن 1 نى ئېلىڭ.
x=-\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=0 x=-\frac{1}{3}
تەڭلىمە يېشىلدى.
x+3x^{2}=0
3x^{2} نى ھەر ئىككى تەرەپكە قوشۇڭ.
3x^{2}+x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{3x^{2}+x}{3}=\frac{0}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x^{2}+\frac{1}{3}x=\frac{0}{3}
3 گە بۆلگەندە 3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{3}x=0
0 نى 3 كە بۆلۈڭ.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\left(\frac{1}{6}\right)^{2}
\frac{1}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{6} نىڭ كىۋادراتىنى تېپىڭ.
\left(x+\frac{1}{6}\right)^{2}=\frac{1}{36}
كۆپەيتكۈچى x^{2}+\frac{1}{3}x+\frac{1}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{6}=\frac{1}{6} x+\frac{1}{6}=-\frac{1}{6}
ئاددىيلاشتۇرۇڭ.
x=0 x=-\frac{1}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{6} نى ئېلىڭ.