ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

xx+x\times 4=5
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x گە كۆپەيتىڭ.
x^{2}+x\times 4=5
x گە x نى كۆپەيتىپ x^{2} نى چىقىرىڭ.
x^{2}+x\times 4-5=0
ھەر ئىككى تەرەپتىن 5 نى ئېلىڭ.
x^{2}+4x-5=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-4±\sqrt{4^{2}-4\left(-5\right)}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 4 نى b گە ۋە -5 نى c گە ئالماشتۇرۇڭ.
x=\frac{-4±\sqrt{16-4\left(-5\right)}}{2}
4 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-4±\sqrt{16+20}}{2}
-4 نى -5 كە كۆپەيتىڭ.
x=\frac{-4±\sqrt{36}}{2}
16 نى 20 گە قوشۇڭ.
x=\frac{-4±6}{2}
36 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-4±6}{2} نى يېشىڭ. -4 نى 6 گە قوشۇڭ.
x=1
2 نى 2 كە بۆلۈڭ.
x=-\frac{10}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-4±6}{2} نى يېشىڭ. -4 دىن 6 نى ئېلىڭ.
x=-5
-10 نى 2 كە بۆلۈڭ.
x=1 x=-5
تەڭلىمە يېشىلدى.
xx+x\times 4=5
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x گە كۆپەيتىڭ.
x^{2}+x\times 4=5
x گە x نى كۆپەيتىپ x^{2} نى چىقىرىڭ.
x^{2}+4x=5
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}+4x+2^{2}=5+2^{2}
4، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، 2 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+4x+4=5+4
2 نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+4x+4=9
5 نى 4 گە قوشۇڭ.
\left(x+2\right)^{2}=9
كۆپەيتكۈچى x^{2}+4x+4. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+2=3 x+2=-3
ئاددىيلاشتۇرۇڭ.
x=1 x=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.