ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+3y=6,5x-2y=13
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+3y=6
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-3y+6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
5\left(-3y+6\right)-2y=13
يەنە بىر تەڭلىمە 5x-2y=13 دىكى x نىڭ ئورنىغا -3y+6 نى ئالماشتۇرۇڭ.
-15y+30-2y=13
5 نى -3y+6 كە كۆپەيتىڭ.
-17y+30=13
-15y نى -2y گە قوشۇڭ.
-17y=-17
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 30 نى ئېلىڭ.
y=1
ھەر ئىككى تەرەپنى -17 گە بۆلۈڭ.
x=-3+6
x=-3y+6 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=3
6 نى -3 گە قوشۇڭ.
x=3,y=1
سىستېما ھەل قىلىندى.
x+3y=6,5x-2y=13
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\13\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
\left(\begin{matrix}1&3\\5&-2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-3\times 5}&-\frac{3}{-2-3\times 5}\\-\frac{5}{-2-3\times 5}&\frac{1}{-2-3\times 5}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{3}{17}\\\frac{5}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 6+\frac{3}{17}\times 13\\\frac{5}{17}\times 6-\frac{1}{17}\times 13\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
ھېسابلاڭ.
x=3,y=1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+3y=6,5x-2y=13
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5x+5\times 3y=5\times 6,5x-2y=13
x بىلەن 5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
5x+15y=30,5x-2y=13
ئاددىيلاشتۇرۇڭ.
5x-5x+15y+2y=30-13
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 5x+15y=30 دىن 5x-2y=13 نى ئېلىڭ.
15y+2y=30-13
5x نى -5x گە قوشۇڭ. 5x بىلەن -5x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
17y=30-13
15y نى 2y گە قوشۇڭ.
17y=17
30 نى -13 گە قوشۇڭ.
y=1
ھەر ئىككى تەرەپنى 17 گە بۆلۈڭ.
5x-2=13
5x-2y=13 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x=15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
x=3
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=3,y=1
سىستېما ھەل قىلىندى.