ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

9x-2y=12
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
x+2y=12,9x-2y=12
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+2y=12
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-2y+12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2y نى ئېلىڭ.
9\left(-2y+12\right)-2y=12
يەنە بىر تەڭلىمە 9x-2y=12 دىكى x نىڭ ئورنىغا -2y+12 نى ئالماشتۇرۇڭ.
-18y+108-2y=12
9 نى -2y+12 كە كۆپەيتىڭ.
-20y+108=12
-18y نى -2y گە قوشۇڭ.
-20y=-96
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 108 نى ئېلىڭ.
y=\frac{24}{5}
ھەر ئىككى تەرەپنى -20 گە بۆلۈڭ.
x=-2\times \frac{24}{5}+12
x=-2y+12 دە \frac{24}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{48}{5}+12
-2 نى \frac{24}{5} كە كۆپەيتىڭ.
x=\frac{12}{5}
12 نى -\frac{48}{5} گە قوشۇڭ.
x=\frac{12}{5},y=\frac{24}{5}
سىستېما ھەل قىلىندى.
9x-2y=12
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
x+2y=12,9x-2y=12
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
\left(\begin{matrix}1&2\\9&-2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2\times 9}&-\frac{2}{-2-2\times 9}\\-\frac{9}{-2-2\times 9}&\frac{1}{-2-2\times 9}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\\frac{9}{20}&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 12+\frac{1}{10}\times 12\\\frac{9}{20}\times 12-\frac{1}{20}\times 12\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}\\\frac{24}{5}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{12}{5},y=\frac{24}{5}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
9x-2y=12
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
x+2y=12,9x-2y=12
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
9x+9\times 2y=9\times 12,9x-2y=12
x بىلەن 9x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 9 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
9x+18y=108,9x-2y=12
ئاددىيلاشتۇرۇڭ.
9x-9x+18y+2y=108-12
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 9x+18y=108 دىن 9x-2y=12 نى ئېلىڭ.
18y+2y=108-12
9x نى -9x گە قوشۇڭ. 9x بىلەن -9x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
20y=108-12
18y نى 2y گە قوشۇڭ.
20y=96
108 نى -12 گە قوشۇڭ.
y=\frac{24}{5}
ھەر ئىككى تەرەپنى 20 گە بۆلۈڭ.
9x-2\times \frac{24}{5}=12
9x-2y=12 دە \frac{24}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
9x-\frac{48}{5}=12
-2 نى \frac{24}{5} كە كۆپەيتىڭ.
9x=\frac{108}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{48}{5} نى قوشۇڭ.
x=\frac{12}{5}
ھەر ئىككى تەرەپنى 9 گە بۆلۈڭ.
x=\frac{12}{5},y=\frac{24}{5}
سىستېما ھەل قىلىندى.