ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

xx+x\times 11=-30
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x گە كۆپەيتىڭ.
x^{2}+x\times 11=-30
x گە x نى كۆپەيتىپ x^{2} نى چىقىرىڭ.
x^{2}+x\times 11+30=0
30 نى ھەر ئىككى تەرەپكە قوشۇڭ.
x^{2}+11x+30=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-11±\sqrt{11^{2}-4\times 30}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 11 نى b گە ۋە 30 نى c گە ئالماشتۇرۇڭ.
x=\frac{-11±\sqrt{121-4\times 30}}{2}
11 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-11±\sqrt{121-120}}{2}
-4 نى 30 كە كۆپەيتىڭ.
x=\frac{-11±\sqrt{1}}{2}
121 نى -120 گە قوشۇڭ.
x=\frac{-11±1}{2}
1 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=-\frac{10}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-11±1}{2} نى يېشىڭ. -11 نى 1 گە قوشۇڭ.
x=-5
-10 نى 2 كە بۆلۈڭ.
x=-\frac{12}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-11±1}{2} نى يېشىڭ. -11 دىن 1 نى ئېلىڭ.
x=-6
-12 نى 2 كە بۆلۈڭ.
x=-5 x=-6
تەڭلىمە يېشىلدى.
xx+x\times 11=-30
نۆلگە بۆلۈش بەلگىلەنمىگەچكە ئۆزگەرگۈچى مىقدار x قىممەت 0 گە تەڭ ئەمەس. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى x گە كۆپەيتىڭ.
x^{2}+x\times 11=-30
x گە x نى كۆپەيتىپ x^{2} نى چىقىرىڭ.
x^{2}+11x=-30
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-30+\left(\frac{11}{2}\right)^{2}
11، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{11}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{11}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+11x+\frac{121}{4}=-30+\frac{121}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{11}{2} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+11x+\frac{121}{4}=\frac{1}{4}
-30 نى \frac{121}{4} گە قوشۇڭ.
\left(x+\frac{11}{2}\right)^{2}=\frac{1}{4}
كۆپەيتكۈچى x^{2}+11x+\frac{121}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{11}{2}=\frac{1}{2} x+\frac{11}{2}=-\frac{1}{2}
ئاددىيلاشتۇرۇڭ.
x=-5 x=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{11}{2} نى ئېلىڭ.