x نى يېشىش
x=\frac{1}{3}\approx 0.333333333
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x+1=3x^{2}+1
1 گە 0 نى قوشۇپ 1 نى چىقىرىڭ.
x+1-3x^{2}=1
ھەر ئىككى تەرەپتىن 3x^{2} نى ئېلىڭ.
x+1-3x^{2}-1=0
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
x-3x^{2}=0
1 دىن 1 نى ئېلىپ 0 نى چىقىرىڭ.
x\left(1-3x\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=\frac{1}{3}
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 1-3x=0 نى يېشىڭ.
x+1=3x^{2}+1
1 گە 0 نى قوشۇپ 1 نى چىقىرىڭ.
x+1-3x^{2}=1
ھەر ئىككى تەرەپتىن 3x^{2} نى ئېلىڭ.
x+1-3x^{2}-1=0
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
x-3x^{2}=0
1 دىن 1 نى ئېلىپ 0 نى چىقىرىڭ.
-3x^{2}+x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-3\right)}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا -3 نى a گە، 1 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±1}{2\left(-3\right)}
1^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-1±1}{-6}
2 نى -3 كە كۆپەيتىڭ.
x=\frac{0}{-6}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-1±1}{-6} نى يېشىڭ. -1 نى 1 گە قوشۇڭ.
x=0
0 نى -6 كە بۆلۈڭ.
x=-\frac{2}{-6}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-1±1}{-6} نى يېشىڭ. -1 دىن 1 نى ئېلىڭ.
x=\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{-6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=0 x=\frac{1}{3}
تەڭلىمە يېشىلدى.
x+1=3x^{2}+1
1 گە 0 نى قوشۇپ 1 نى چىقىرىڭ.
x+1-3x^{2}=1
ھەر ئىككى تەرەپتىن 3x^{2} نى ئېلىڭ.
x-3x^{2}=1-1
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ.
x-3x^{2}=0
1 دىن 1 نى ئېلىپ 0 نى چىقىرىڭ.
-3x^{2}+x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{-3x^{2}+x}{-3}=\frac{0}{-3}
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
x^{2}+\frac{1}{-3}x=\frac{0}{-3}
-3 گە بۆلگەندە -3 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{3}x=\frac{0}{-3}
1 نى -3 كە بۆلۈڭ.
x^{2}-\frac{1}{3}x=0
0 نى -3 كە بۆلۈڭ.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{6} نىڭ كىۋادراتىنى تېپىڭ.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
كۆپەيتكۈچى x^{2}-\frac{1}{3}x+\frac{1}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
ئاددىيلاشتۇرۇڭ.
x=\frac{1}{3} x=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{6} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}