ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=7 ab=1\times 12=12
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى x^{2}+ax+bx+12 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,12 2,6 3,4
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+12=13 2+6=8 3+4=7
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=3 b=4
7 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(x^{2}+3x\right)+\left(4x+12\right)
x^{2}+7x+12 نى \left(x^{2}+3x\right)+\left(4x+12\right) شەكلىدە قايتا يېزىڭ.
x\left(x+3\right)+4\left(x+3\right)
بىرىنچى گۇرۇپپىدىن x نى، ئىككىنچى گۇرۇپپىدىن 4 نى چىقىرىڭ.
\left(x+3\right)\left(x+4\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x+3 نى چىقىرىڭ.
x^{2}+7x+12=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-7±\sqrt{49-4\times 12}}{2}
7 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-7±\sqrt{49-48}}{2}
-4 نى 12 كە كۆپەيتىڭ.
x=\frac{-7±\sqrt{1}}{2}
49 نى -48 گە قوشۇڭ.
x=\frac{-7±1}{2}
1 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=-\frac{6}{2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-7±1}{2} نى يېشىڭ. -7 نى 1 گە قوشۇڭ.
x=-3
-6 نى 2 كە بۆلۈڭ.
x=-\frac{8}{2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-7±1}{2} نى يېشىڭ. -7 دىن 1 نى ئېلىڭ.
x=-4
-8 نى 2 كە بۆلۈڭ.
x^{2}+7x+12=\left(x-\left(-3\right)\right)\left(x-\left(-4\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -3 نى x_{1} گە ۋە -4 نى x_{2} گە ئالماشتۇرۇڭ.
x^{2}+7x+12=\left(x+3\right)\left(x+4\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.