w نى يېشىش
w=10
w=0
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
w^{2}-10w=0
ھەر ئىككى تەرەپتىن 10w نى ئېلىڭ.
w\left(w-10\right)=0
w نى ئاجرىتىپ چىقىرىڭ.
w=0 w=10
تەڭلىمىنى يېشىش ئۈچۈن w=0 بىلەن w-10=0 نى يېشىڭ.
w^{2}-10w=0
ھەر ئىككى تەرەپتىن 10w نى ئېلىڭ.
w=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، -10 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
w=\frac{-\left(-10\right)±10}{2}
\left(-10\right)^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
w=\frac{10±10}{2}
-10 نىڭ قارشىسى 10 دۇر.
w=\frac{20}{2}
± پىلۇس بولغاندىكى تەڭلىمە w=\frac{10±10}{2} نى يېشىڭ. 10 نى 10 گە قوشۇڭ.
w=10
20 نى 2 كە بۆلۈڭ.
w=\frac{0}{2}
± مىنۇس بولغاندىكى تەڭلىمە w=\frac{10±10}{2} نى يېشىڭ. 10 دىن 10 نى ئېلىڭ.
w=0
0 نى 2 كە بۆلۈڭ.
w=10 w=0
تەڭلىمە يېشىلدى.
w^{2}-10w=0
ھەر ئىككى تەرەپتىن 10w نى ئېلىڭ.
w^{2}-10w+\left(-5\right)^{2}=\left(-5\right)^{2}
-10، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -5 نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -5 نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
w^{2}-10w+25=25
-5 نىڭ كىۋادراتىنى تېپىڭ.
\left(w-5\right)^{2}=25
كۆپەيتكۈچى w^{2}-10w+25. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(w-5\right)^{2}}=\sqrt{25}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
w-5=5 w-5=-5
ئاددىيلاشتۇرۇڭ.
w=10 w=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}