x نى يېشىش (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{5y^{4}+uy^{2}-9y^{2}-5u}+4y}{y^{2}-5}\text{; }x=\frac{-\sqrt{5y^{4}+uy^{2}-9y^{2}-5u}+4y}{y^{2}-5}\text{, }&y\neq -\sqrt{5}\text{ and }y\neq \sqrt{5}\\x=\frac{-5y^{2}-u}{8y}\text{, }&y=-\sqrt{5}\text{ or }y=\sqrt{5}\end{matrix}\right.
u نى يېشىش
u=\left(xy\right)^{2}-5y^{2}-8xy-5x^{2}
x نى يېشىش
\left\{\begin{matrix}x=\frac{\sqrt{5y^{4}+uy^{2}-9y^{2}-5u}+4y}{y^{2}-5}\text{; }x=\frac{-\sqrt{5y^{4}+uy^{2}-9y^{2}-5u}+4y}{y^{2}-5}\text{, }&\left(y\neq -\sqrt{5}\text{ and }u=-\frac{y^{2}\left(5y^{2}-9\right)}{y^{2}-5}\text{ and }|y|<\sqrt{5}\right)\text{ or }\left(u\leq -\frac{y^{2}\left(5y^{2}-9\right)}{y^{2}-5}\text{ and }y>-\sqrt{5}\text{ and }|y|<\sqrt{5}\right)\text{ or }\left(u\geq -\frac{y^{2}\left(5y^{2}-9\right)}{y^{2}-5}\text{ and }|y|>\sqrt{5}\right)\text{ or }\left(u=-\frac{y^{2}\left(5y^{2}-9\right)}{y^{2}-5}\text{ and }|y|\neq \sqrt{5}\right)\\x=\frac{-5y^{2}-u}{8y}\text{, }&|y|=\sqrt{5}\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}