n نى يېشىش
n=-\frac{1}{r}
r\neq 0
r نى يېشىش
r=-\frac{1}{n}
n\neq 0
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
rn=-1
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
\frac{rn}{r}=-\frac{1}{r}
ھەر ئىككى تەرەپنى r گە بۆلۈڭ.
n=-\frac{1}{r}
r گە بۆلگەندە r گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
rn=-1
ھەر ئىككى تەرەپتىن 1 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
nr=-1
تەڭلىمە ئۆلچەملىك بولدى.
\frac{nr}{n}=-\frac{1}{n}
ھەر ئىككى تەرەپنى n گە بۆلۈڭ.
r=-\frac{1}{n}
n گە بۆلگەندە n گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}