a نى يېشىش (complex solution)
a=\frac{p^{x}}{2}
a نى يېشىش
a=\frac{p^{x}}{2}
\left(p<0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(p=0\text{ and }x>0\right)\text{ or }p>0
p نى يېشىش (complex solution)
p=e^{\frac{Im(x)arg(a)+iRe(x)arg(a)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\times \left(2|a|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
p نى يېشىش
\left\{\begin{matrix}p=\left(2a\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }a<0\text{ and }\left(2a\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(\left(2a\right)^{\frac{1}{x}}<0\text{ and }a>0\text{ and }x\neq 0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(x>0\text{ and }a=0\right)\text{ or }\left(\left(2a\right)^{\frac{1}{x}}>0\text{ and }a>0\text{ and }x\neq 0\right)\\p=-\left(2a\right)^{\frac{1}{x}}\text{, }&\left(a<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(2a\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(a>0\text{ and }x\neq 0\text{ and }\left(2a\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(Numerator(x)\text{bmod}2=0\text{ and }a=0\text{ and }x>0\right)\text{ or }\left(a>0\text{ and }x\neq 0\text{ and }\left(2a\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\right)\\p\neq 0\text{, }&x=0\text{ and }a=\frac{1}{2}\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2a=p^{x}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\frac{2a}{2}=\frac{p^{x}}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
a=\frac{p^{x}}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
2a=p^{x}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\frac{2a}{2}=\frac{p^{x}}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
a=\frac{p^{x}}{2}
2 گە بۆلگەندە 2 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}