k نى يېشىش
k=\frac{x\times \left(\frac{n}{\pi }\right)^{2}}{4}
n\geq 0\text{ and }x\neq 0
k نى يېشىش (complex solution)
k=\frac{x\times \left(\frac{n}{\pi }\right)^{2}}{4}
x\neq 0\text{ and }\left(n=0\text{ or }|\frac{arg(n^{2})}{2}-arg(n)|<\pi \right)
n نى يېشىش (complex solution)
n=2\pi \sqrt{\frac{k}{x}}
x\neq 0
n نى يېشىش
n=2\pi \sqrt{\frac{k}{x}}
\left(k\geq 0\text{ and }x>0\right)\text{ or }\left(k\leq 0\text{ and }x<0\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2\pi \sqrt{\frac{k}{x}}=n
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\frac{2\pi \sqrt{\frac{1}{x}k}}{2\pi }=\frac{n}{2\pi }
ھەر ئىككى تەرەپنى 2\pi گە بۆلۈڭ.
\sqrt{\frac{1}{x}k}=\frac{n}{2\pi }
2\pi گە بۆلگەندە 2\pi گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
\frac{1}{x}k=\frac{n^{2}}{4\pi ^{2}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
\frac{\frac{1}{x}kx}{1}=\frac{n^{2}}{4\pi ^{2}\times \frac{1}{x}}
ھەر ئىككى تەرەپنى x^{-1} گە بۆلۈڭ.
k=\frac{n^{2}}{4\pi ^{2}\times \frac{1}{x}}
x^{-1} گە بۆلگەندە x^{-1} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
k=\frac{xn^{2}}{4\pi ^{2}}
\frac{n^{2}}{4\pi ^{2}} نى x^{-1} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}