m نى يېشىش
m = \frac{\sqrt{29} + 7}{2} \approx 6.192582404
m=\frac{7-\sqrt{29}}{2}\approx 0.807417596
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
m^{2}-7m+5=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
m=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، -7 نى b گە ۋە 5 نى c گە ئالماشتۇرۇڭ.
m=\frac{-\left(-7\right)±\sqrt{49-4\times 5}}{2}
-7 نىڭ كىۋادراتىنى تېپىڭ.
m=\frac{-\left(-7\right)±\sqrt{49-20}}{2}
-4 نى 5 كە كۆپەيتىڭ.
m=\frac{-\left(-7\right)±\sqrt{29}}{2}
49 نى -20 گە قوشۇڭ.
m=\frac{7±\sqrt{29}}{2}
-7 نىڭ قارشىسى 7 دۇر.
m=\frac{\sqrt{29}+7}{2}
± پىلۇس بولغاندىكى تەڭلىمە m=\frac{7±\sqrt{29}}{2} نى يېشىڭ. 7 نى \sqrt{29} گە قوشۇڭ.
m=\frac{7-\sqrt{29}}{2}
± مىنۇس بولغاندىكى تەڭلىمە m=\frac{7±\sqrt{29}}{2} نى يېشىڭ. 7 دىن \sqrt{29} نى ئېلىڭ.
m=\frac{\sqrt{29}+7}{2} m=\frac{7-\sqrt{29}}{2}
تەڭلىمە يېشىلدى.
m^{2}-7m+5=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
m^{2}-7m+5-5=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5 نى ئېلىڭ.
m^{2}-7m=-5
5 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
m^{2}-7m+\left(-\frac{7}{2}\right)^{2}=-5+\left(-\frac{7}{2}\right)^{2}
-7، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{7}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{7}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
m^{2}-7m+\frac{49}{4}=-5+\frac{49}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{7}{2} نىڭ كىۋادراتىنى تېپىڭ.
m^{2}-7m+\frac{49}{4}=\frac{29}{4}
-5 نى \frac{49}{4} گە قوشۇڭ.
\left(m-\frac{7}{2}\right)^{2}=\frac{29}{4}
كۆپەيتكۈچى m^{2}-7m+\frac{49}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(m-\frac{7}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
m-\frac{7}{2}=\frac{\sqrt{29}}{2} m-\frac{7}{2}=-\frac{\sqrt{29}}{2}
ئاددىيلاشتۇرۇڭ.
m=\frac{\sqrt{29}+7}{2} m=\frac{7-\sqrt{29}}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{7}{2} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}