k نى يېشىش
k=\frac{28}{1-\delta }
\delta \neq 1
δ نى يېشىش
\delta =\frac{k-28}{k}
k\neq 0
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
k-\delta k=28
ھەر ئىككى تەرەپتىن \delta k نى ئېلىڭ.
\left(1-\delta \right)k=28
k نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\frac{\left(1-\delta \right)k}{1-\delta }=\frac{28}{1-\delta }
ھەر ئىككى تەرەپنى -\delta +1 گە بۆلۈڭ.
k=\frac{28}{1-\delta }
-\delta +1 گە بۆلگەندە -\delta +1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
\delta k+28=k
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\delta k=k-28
ھەر ئىككى تەرەپتىن 28 نى ئېلىڭ.
k\delta =k-28
تەڭلىمە ئۆلچەملىك بولدى.
\frac{k\delta }{k}=\frac{k-28}{k}
ھەر ئىككى تەرەپنى k گە بۆلۈڭ.
\delta =\frac{k-28}{k}
k گە بۆلگەندە k گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}