كۆپەيتكۈچى
-5\left(x-3\right)\left(x+1\right)
ھېسابلاش
-5\left(x-3\right)\left(x+1\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5\left(-x^{2}+2x+3\right)
5 نى ئاجرىتىپ چىقىرىڭ.
a+b=2 ab=-3=-3
-x^{2}+2x+3 نى ئويلىشىپ كۆرۈڭ. ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -x^{2}+ax+bx+3 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=3 b=-1
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(-x^{2}+3x\right)+\left(-x+3\right)
-x^{2}+2x+3 نى \left(-x^{2}+3x\right)+\left(-x+3\right) شەكلىدە قايتا يېزىڭ.
-x\left(x-3\right)-\left(x-3\right)
بىرىنچى گۇرۇپپىدىن -x نى، ئىككىنچى گۇرۇپپىدىن -1 نى چىقىرىڭ.
\left(x-3\right)\left(-x-1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-3 نى چىقىرىڭ.
5\left(x-3\right)\left(-x-1\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
-5x^{2}+10x+15=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\times 15}}{2\left(-5\right)}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-10±\sqrt{100-4\left(-5\right)\times 15}}{2\left(-5\right)}
10 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-10±\sqrt{100+20\times 15}}{2\left(-5\right)}
-4 نى -5 كە كۆپەيتىڭ.
x=\frac{-10±\sqrt{100+300}}{2\left(-5\right)}
20 نى 15 كە كۆپەيتىڭ.
x=\frac{-10±\sqrt{400}}{2\left(-5\right)}
100 نى 300 گە قوشۇڭ.
x=\frac{-10±20}{2\left(-5\right)}
400 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-10±20}{-10}
2 نى -5 كە كۆپەيتىڭ.
x=\frac{10}{-10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-10±20}{-10} نى يېشىڭ. -10 نى 20 گە قوشۇڭ.
x=-1
10 نى -10 كە بۆلۈڭ.
x=-\frac{30}{-10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-10±20}{-10} نى يېشىڭ. -10 دىن 20 نى ئېلىڭ.
x=3
-30 نى -10 كە بۆلۈڭ.
-5x^{2}+10x+15=-5\left(x-\left(-1\right)\right)\left(x-3\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -1 نى x_{1} گە ۋە 3 نى x_{2} گە ئالماشتۇرۇڭ.
-5x^{2}+10x+15=-5\left(x+1\right)\left(x-3\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}