ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4\left(x^{2}+6x+9\right)
4 نى ئاجرىتىپ چىقىرىڭ.
\left(x+3\right)^{2}
x^{2}+6x+9 نى ئويلىشىپ كۆرۈڭ. a=x ۋە b=3 بولغان پۈتۈن سانلىق كىۋادرات فورمۇلاسى a^{2}+2ab+b^{2}=\left(a+b\right)^{2} نى ئىشلىتىڭ.
4\left(x+3\right)^{2}
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
factor(4x^{2}+24x+36)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
gcf(4,24,36)=4
كوئېففىتسېنتلارنىڭ ئەڭ چوڭ ئومۇمىي بۆلگۈچىسىنى تېپىڭ.
4\left(x^{2}+6x+9\right)
4 نى ئاجرىتىپ چىقىرىڭ.
\sqrt{9}=3
ئاياغ ئەزا 9 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
4\left(x+3\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
4x^{2}+24x+36=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-24±\sqrt{24^{2}-4\times 4\times 36}}{2\times 4}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-24±\sqrt{576-4\times 4\times 36}}{2\times 4}
24 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-24±\sqrt{576-16\times 36}}{2\times 4}
-4 نى 4 كە كۆپەيتىڭ.
x=\frac{-24±\sqrt{576-576}}{2\times 4}
-16 نى 36 كە كۆپەيتىڭ.
x=\frac{-24±\sqrt{0}}{2\times 4}
576 نى -576 گە قوشۇڭ.
x=\frac{-24±0}{2\times 4}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-24±0}{8}
2 نى 4 كە كۆپەيتىڭ.
4x^{2}+24x+36=4\left(x-\left(-3\right)\right)\left(x-\left(-3\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -3 نى x_{1} گە ۋە -3 نى x_{2} گە ئالماشتۇرۇڭ.
4x^{2}+24x+36=4\left(x+3\right)\left(x+3\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.