كۆپەيتكۈچى
\frac{x\left(3-x\right)\left(x-8\right)}{4}
ھېسابلاش
\frac{x\left(3-x\right)\left(x-8\right)}{4}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{-x^{3}+11x^{2}-24x}{4}
\frac{1}{4} نى ئاجرىتىپ چىقىرىڭ.
x\left(-x^{2}+11x-24\right)
-x^{3}+11x^{2}-24x نى ئويلىشىپ كۆرۈڭ. x نى ئاجرىتىپ چىقىرىڭ.
a+b=11 ab=-\left(-24\right)=24
-x^{2}+11x-24 نى ئويلىشىپ كۆرۈڭ. ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى -x^{2}+ax+bx-24 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,24 2,12 3,8 4,6
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ھاسىلات 24 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1+24=25 2+12=14 3+8=11 4+6=10
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=8 b=3
11 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(-x^{2}+8x\right)+\left(3x-24\right)
-x^{2}+11x-24 نى \left(-x^{2}+8x\right)+\left(3x-24\right) شەكلىدە قايتا يېزىڭ.
-x\left(x-8\right)+3\left(x-8\right)
بىرىنچى گۇرۇپپىدىن -x نى، ئىككىنچى گۇرۇپپىدىن 3 نى چىقىرىڭ.
\left(x-8\right)\left(-x+3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-8 نى چىقىرىڭ.
\frac{x\left(x-8\right)\left(-x+3\right)}{4}
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}