ئاساسىي مەزمۇنغا ئاتلاش
ھېسابلاش
Tick mark Image
w.r.t. x نى پارچىلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{2}{x-2}+\frac{x-2}{x-2}
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 1 نى \frac{x-2}{x-2} كە كۆپەيتىڭ.
\frac{2+x-2}{x-2}
\frac{2}{x-2} بىلەن \frac{x-2}{x-2} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{x}{x-2}
2+x-2 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x-2}+\frac{x-2}{x-2})
ئىپادە قوشۇش ياكى ئېلىش ئۈچۈن ئۇلارنى يېيىپ مەخرەجلرىنى ئوخشاش قىلىڭ. 1 نى \frac{x-2}{x-2} كە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2+x-2}{x-2})
\frac{2}{x-2} بىلەن \frac{x-2}{x-2} نىڭ مەخرەجلىرى ئوخشاش، شۇڭا ئۇلارنىڭ سۈرەتلىرىنى قوشۇش ئارقىلىق قوشسىڭىز بولىدۇ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{x-2})
2+x-2 دىكى ئوخشاش شەرتلەرنى بىرىكتۈرۈڭ.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
ھەرقانداق ئىككى دىففېرېنسىيال فۇنكسىيەدە ئىككى فۇنكسىيەنىڭ بۆلۈنمىسىنىڭ ھاسىلىسى سۈرەت ئېلىنغان مەخرەجنىڭ ھاسىلىسىنىڭ سۈرەتكە ھەسسىلىنىشىنىڭ ھاسىلىسىنىڭ مەخرەجگە كۆپەيتىلىشىدۇر، ھەممىسى مەخرەجنىڭ كىۋادراتىغا بۆلۈنىدۇ.
\frac{\left(x^{1}-2\right)x^{1-1}-x^{1}x^{1-1}}{\left(x^{1}-2\right)^{2}}
كۆپ ئەزالىقنىڭ ھاسىلىسى ئۇنىڭ ئەزالىرىنىڭ ھاسىلىسىنىڭ يىغىندىسىدۇر. ھەرقانداق مۇقىم ئەزانىڭ ھاسىلىسى 0 دۇر. ax^{n} نىڭ ھاسىلىسى nax^{n-1} دۇر.
\frac{\left(x^{1}-2\right)x^{0}-x^{1}x^{0}}{\left(x^{1}-2\right)^{2}}
ھېسابلاڭ.
\frac{x^{1}x^{0}-2x^{0}-x^{1}x^{0}}{\left(x^{1}-2\right)^{2}}
تارقىتىش قانۇنى بويىچە يېيىڭ.
\frac{x^{1}-2x^{0}-x^{1}}{\left(x^{1}-2\right)^{2}}
ئوخشاش ئاساسنىڭ دەرىجىسىنى كۆپەيتىپ، دەرىجە كۆرسەتكۈچلىرىنى قوشۇڭ.
\frac{\left(1-1\right)x^{1}-2x^{0}}{\left(x^{1}-2\right)^{2}}
بىر خىل ئەزالارنى بىرىكتۈرۈڭ.
\frac{-2x^{0}}{\left(x^{1}-2\right)^{2}}
1 دىن 1 نى ئېلىڭ.
\frac{-2x^{0}}{\left(x-2\right)^{2}}
ھەرقانداق ئەزا t ئۈچۈن t^{1}=t.
\frac{-2}{\left(x-2\right)^{2}}
0 دىن باشقا ھەرقانداق ئەزا t ئۈچۈن t^{0}=1.