ئاساسىي مەزمۇنغا ئاتلاش
a نى يېشىش
Tick mark Image
b نى يېشىش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \left(x^{2}+c\right)^{2} گە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x^{2}+c\right)^{2} نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
تارقىتىش قانۇنى بويىچە \frac{\mathrm{d}}{\mathrm{d}x}(f)x نى x^{4}+2x^{2}c+c^{2} گە كۆپەيتىڭ.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
2bx نى ھەر ئىككى تەرەپكە قوشۇڭ.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
ئەزالارنى قايتا رەتلەڭ.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
a نى ئۆز ئىچىگە ئالغان بارلىق ئەزالارنى بىرىكتۈرۈڭ.
\left(c-x^{2}\right)a=2bx
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
ھەر ئىككى تەرەپنى -x^{2}+c گە بۆلۈڭ.
a=\frac{2bx}{c-x^{2}}
-x^{2}+c گە بۆلگەندە -x^{2}+c گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \left(x^{2}+c\right)^{2} گە كۆپەيتىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
ئىككى ئەزالىقلار تېيورېمىسى \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ئارقىلىق \left(x^{2}+c\right)^{2} نى يېيىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
مەلۇم ساننىڭ دەرىجىسىنى كۆتۈرۈش ئۈچۈن دەرىجە كۆرسەتكۈچىنى كۆپەيتىڭ. 2 بىلەن 2 نى كۆپەيتىپ، 4 نى تېپىڭ.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
تارقىتىش قانۇنى بويىچە \frac{\mathrm{d}}{\mathrm{d}x}(f)x نى x^{4}+2x^{2}c+c^{2} گە كۆپەيتىڭ.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
ھەر ئىككى تەرەپتىن \left(-a\right)x^{2} نى ئېلىڭ.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
ھەر ئىككى تەرەپتىن ac نى ئېلىڭ.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
-1 گە -1 نى كۆپەيتىپ 1 نى چىقىرىڭ.
\left(-2x\right)b=ax^{2}-ac
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
ھەر ئىككى تەرەپنى -2x گە بۆلۈڭ.
b=\frac{a\left(x^{2}-c\right)}{-2x}
-2x گە بۆلگەندە -2x گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
b=-\frac{ax}{2}+\frac{ac}{2x}
a\left(x^{2}-c\right) نى -2x كە بۆلۈڭ.