c نى يېشىش
c\in \mathrm{R}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
c^{2}-c+\frac{3}{2}=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
c=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times \frac{3}{2}}}{2}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 1 نى a گە، -1 نى b گە ۋە \frac{3}{2} نى c گە ئالماشتۇرۇڭ.
c=\frac{1±\sqrt{-5}}{2}
ھېسابلاڭ.
0^{2}-0+\frac{3}{2}=\frac{3}{2}
مەنپىي ساننىڭ كىۋادرات يىلتىزى ھەقىقىي قىسىمدا ئېنىقلانمىغاچقا يېشىم يوق. c^{2}-c+\frac{3}{2} دېگەن ئىپادىنىڭ بەلگىسى ھەرقانداق c ئۈچۈن ئوخشاش. بەلگىنى ئېنىقلاش ئۈچۈن ئىپادە قىممىتىنى ھېسابلاپ، c=0 نى تېپىڭ.
c\in \mathrm{R}
c^{2}-c+\frac{3}{2} دېگەن ئىپادىنىڭ قىممىتى ئىزچىل مۇسبەت. تەڭسىزلىك c\in \mathrm{R} نى تولۇقلايدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}