ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش (complex solution)
Tick mark Image
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
bx+cy=a+b
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
bx=\left(-c\right)y+a+b
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن cy نى ئېلىڭ.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
ھەر ئىككى تەرەپنى b گە بۆلۈڭ.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
\frac{1}{b} نى -cy+a+b كە كۆپەيتىڭ.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
يەنە بىر تەڭلىمە \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b} دىكى x نىڭ ئورنىغا \frac{-cy+a+b}{b} نى ئالماشتۇرۇڭ.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) نى \frac{-cy+a+b}{b} كە كۆپەيتىڭ.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
-\frac{2acy}{\left(a-b\right)\left(a+b\right)} نى \frac{2cay}{\left(b-a\right)\left(b+a\right)} گە قوشۇڭ.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{2a}{a-b} نى ئېلىڭ.
y=\frac{b}{c}
ھەر ئىككى تەرەپنى \frac{4ca}{\left(b-a\right)\left(a+b\right)} گە بۆلۈڭ.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b} دە \frac{b}{c} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-1+\frac{a+b}{b}
-\frac{c}{b} نى \frac{b}{c} كە كۆپەيتىڭ.
x=\frac{a}{b}
\frac{a+b}{b} نى -1 گە قوشۇڭ.
x=\frac{a}{b},y=\frac{b}{c}
سىستېما ھەل قىلىندى.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
\left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{a}{b},y=\frac{b}{c}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
bx بىلەن \frac{2abx}{\left(a-b\right)\left(a+b\right)} نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى b گە كۆپەيتىڭ.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
ئاددىيلاشتۇرۇڭ.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} دىن \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} نى ئېلىڭ.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} نى -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} گە قوشۇڭ. \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} بىلەن -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2abcy}{\left(a-b\right)\left(a+b\right)} نى -\frac{2bcay}{\left(b-a\right)\left(b+a\right)} گە قوشۇڭ.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
\frac{2ab}{a-b} نى -\frac{2ba}{a+b} گە قوشۇڭ.
y=\frac{b}{c}
ھەر ئىككى تەرەپنى \frac{4bca}{\left(a-b\right)\left(a+b\right)} گە بۆلۈڭ.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b} دە \frac{b}{c} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) نى \frac{b}{c} كە كۆپەيتىڭ.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{2ab}{\left(b-a\right)\left(b+a\right)} نى ئېلىڭ.
x=\frac{a}{b}
ھەر ئىككى تەرەپنى a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) گە بۆلۈڭ.
x=\frac{a}{b},y=\frac{b}{c}
سىستېما ھەل قىلىندى.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
bx+cy=a+b
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
bx=\left(-c\right)y+a+b
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن cy نى ئېلىڭ.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
ھەر ئىككى تەرەپنى b گە بۆلۈڭ.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
\frac{1}{b} نى -cy+a+b كە كۆپەيتىڭ.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
يەنە بىر تەڭلىمە \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b} دىكى x نىڭ ئورنىغا \frac{-cy+a+b}{b} نى ئالماشتۇرۇڭ.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) نى \frac{-cy+a+b}{b} كە كۆپەيتىڭ.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
-\frac{2acy}{\left(a-b\right)\left(a+b\right)} نى \frac{2cay}{\left(b-a\right)\left(b+a\right)} گە قوشۇڭ.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{2a}{a-b} نى ئېلىڭ.
y=\frac{b}{c}
ھەر ئىككى تەرەپنى \frac{4ca}{\left(b-a\right)\left(a+b\right)} گە بۆلۈڭ.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b} دە \frac{b}{c} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-1+\frac{a+b}{b}
-\frac{c}{b} نى \frac{b}{c} كە كۆپەيتىڭ.
x=\frac{a}{b}
\frac{a+b}{b} نى -1\text{, }|b|\neq |a| گە قوشۇڭ.
x=\frac{a}{b},y=\frac{b}{c}
سىستېما ھەل قىلىندى.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
\left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{a}{b},y=\frac{b}{c}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
bx بىلەن \frac{2abx}{\left(a-b\right)\left(a+b\right)} نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى b گە كۆپەيتىڭ.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
ئاددىيلاشتۇرۇڭ.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} دىن \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} نى ئېلىڭ.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} نى -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} گە قوشۇڭ. \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} بىلەن -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2abcy}{\left(a-b\right)\left(a+b\right)} نى -\frac{2bcay}{\left(b-a\right)\left(b+a\right)} گە قوشۇڭ.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
\frac{2ab}{a-b} نى -\frac{2ba}{a+b} گە قوشۇڭ.
y=\frac{b}{c}
ھەر ئىككى تەرەپنى \frac{4bca}{\left(a-b\right)\left(a+b\right)} گە بۆلۈڭ.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b} دە \frac{b}{c} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) نى \frac{b}{c} كە كۆپەيتىڭ.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{2ab}{\left(b-a\right)\left(b+a\right)} نى ئېلىڭ.
x=\frac{a}{b}
ھەر ئىككى تەرەپنى a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) گە بۆلۈڭ.
x=\frac{a}{b},y=\frac{b}{c}
سىستېما ھەل قىلىندى.