كۆپەيتكۈچى
\left(a-4\right)\left(a+2\right)
ھېسابلاش
\left(a-4\right)\left(a+2\right)
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
p+q=-2 pq=1\left(-8\right)=-8
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى a^{2}+pa+qa-8 دېگەن شەكىلدە قايتا يېزىش كېرەك. p ۋە q نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-8 2,-4
pq مەنپىي، شۇڭا p بىلەن q نىڭ بەلگىسى قارىمۇقارشى. p+q مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -8 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-8=-7 2-4=-2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
p=-4 q=2
-2 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(a^{2}-4a\right)+\left(2a-8\right)
a^{2}-2a-8 نى \left(a^{2}-4a\right)+\left(2a-8\right) شەكلىدە قايتا يېزىڭ.
a\left(a-4\right)+2\left(a-4\right)
بىرىنچى گۇرۇپپىدىن a نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(a-4\right)\left(a+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا a-4 نى چىقىرىڭ.
a^{2}-2a-8=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
-2 نىڭ كىۋادراتىنى تېپىڭ.
a=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
-4 نى -8 كە كۆپەيتىڭ.
a=\frac{-\left(-2\right)±\sqrt{36}}{2}
4 نى 32 گە قوشۇڭ.
a=\frac{-\left(-2\right)±6}{2}
36 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
a=\frac{2±6}{2}
-2 نىڭ قارشىسى 2 دۇر.
a=\frac{8}{2}
± پىلۇس بولغاندىكى تەڭلىمە a=\frac{2±6}{2} نى يېشىڭ. 2 نى 6 گە قوشۇڭ.
a=4
8 نى 2 كە بۆلۈڭ.
a=-\frac{4}{2}
± مىنۇس بولغاندىكى تەڭلىمە a=\frac{2±6}{2} نى يېشىڭ. 2 دىن 6 نى ئېلىڭ.
a=-2
-4 نى 2 كە بۆلۈڭ.
a^{2}-2a-8=\left(a-4\right)\left(a-\left(-2\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 4 نى x_{1} گە ۋە -2 نى x_{2} گە ئالماشتۇرۇڭ.
a^{2}-2a-8=\left(a-4\right)\left(a+2\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}