a نى يېشىش
a=-3
a=1
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a^{2}+2a+1-4=0
ھەر ئىككى تەرەپتىن 4 نى ئېلىڭ.
a^{2}+2a-3=0
1 دىن 4 نى ئېلىپ -3 نى چىقىرىڭ.
a+b=2 ab=-3
تەڭلىمىنى يېشىش ئۈچۈن a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) دېگەن فورمۇلا ئارقىلىق a^{2}+2a-3 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=-1 b=3
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(a-1\right)\left(a+3\right)
كۆپەيتكەن \left(a+a\right)\left(a+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
a=1 a=-3
تەڭلىمىنى يېشىش ئۈچۈن a-1=0 بىلەن a+3=0 نى يېشىڭ.
a^{2}+2a+1-4=0
ھەر ئىككى تەرەپتىن 4 نى ئېلىڭ.
a^{2}+2a-3=0
1 دىن 4 نى ئېلىپ -3 نى چىقىرىڭ.
a+b=2 ab=1\left(-3\right)=-3
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى a^{2}+aa+ba-3 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=-1 b=3
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(a^{2}-a\right)+\left(3a-3\right)
a^{2}+2a-3 نى \left(a^{2}-a\right)+\left(3a-3\right) شەكلىدە قايتا يېزىڭ.
a\left(a-1\right)+3\left(a-1\right)
بىرىنچى گۇرۇپپىدىن a نى، ئىككىنچى گۇرۇپپىدىن 3 نى چىقىرىڭ.
\left(a-1\right)\left(a+3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا a-1 نى چىقىرىڭ.
a=1 a=-3
تەڭلىمىنى يېشىش ئۈچۈن a-1=0 بىلەن a+3=0 نى يېشىڭ.
a^{2}+2a+1=4
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
a^{2}+2a+1-4=4-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
a^{2}+2a+1-4=0
4 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
a^{2}+2a-3=0
1 دىن 4 نى ئېلىڭ.
a=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 2 نى b گە ۋە -3 نى c گە ئالماشتۇرۇڭ.
a=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
2 نىڭ كىۋادراتىنى تېپىڭ.
a=\frac{-2±\sqrt{4+12}}{2}
-4 نى -3 كە كۆپەيتىڭ.
a=\frac{-2±\sqrt{16}}{2}
4 نى 12 گە قوشۇڭ.
a=\frac{-2±4}{2}
16 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
a=\frac{2}{2}
± پىلۇس بولغاندىكى تەڭلىمە a=\frac{-2±4}{2} نى يېشىڭ. -2 نى 4 گە قوشۇڭ.
a=1
2 نى 2 كە بۆلۈڭ.
a=-\frac{6}{2}
± مىنۇس بولغاندىكى تەڭلىمە a=\frac{-2±4}{2} نى يېشىڭ. -2 دىن 4 نى ئېلىڭ.
a=-3
-6 نى 2 كە بۆلۈڭ.
a=1 a=-3
تەڭلىمە يېشىلدى.
\left(a+1\right)^{2}=4
كۆپەيتكۈچى a^{2}+2a+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(a+1\right)^{2}}=\sqrt{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
a+1=2 a+1=-2
ئاددىيلاشتۇرۇڭ.
a=1 a=-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}