ئاساسىي مەزمۇنغا ئاتلاش
a نى يېشىش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=2 ab=1
تەڭلىمىنى يېشىش ئۈچۈن a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) دېگەن فورمۇلا ئارقىلىق a^{2}+2a+1 نى ھېسابلاڭ. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=1 b=1
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(a+1\right)\left(a+1\right)
كۆپەيتكەن \left(a+a\right)\left(a+b\right) دېگەن ئىپادىنى تاپقان قىممەت ئارقىلىق قايتا يېزىڭ.
\left(a+1\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
a=-1
تەڭلىمىنى يېشىش ئۈچۈن a+1=0 نى يېشىڭ.
a+b=2 ab=1\times 1=1
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى a^{2}+aa+ba+1 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
a=1 b=1
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مۇسبەت، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مۇسبەت. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(a^{2}+a\right)+\left(a+1\right)
a^{2}+2a+1 نى \left(a^{2}+a\right)+\left(a+1\right) شەكلىدە قايتا يېزىڭ.
a\left(a+1\right)+a+1
a^{2}+a دىن a نى چىقىرىڭ.
\left(a+1\right)\left(a+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا a+1 نى چىقىرىڭ.
\left(a+1\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
a=-1
تەڭلىمىنى يېشىش ئۈچۈن a+1=0 نى يېشىڭ.
a^{2}+2a+1=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
a=\frac{-2±\sqrt{2^{2}-4}}{2}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 1 نى a گە، 2 نى b گە ۋە 1 نى c گە ئالماشتۇرۇڭ.
a=\frac{-2±\sqrt{4-4}}{2}
2 نىڭ كىۋادراتىنى تېپىڭ.
a=\frac{-2±\sqrt{0}}{2}
4 نى -4 گە قوشۇڭ.
a=-\frac{2}{2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
a=-1
-2 نى 2 كە بۆلۈڭ.
\left(a+1\right)^{2}=0
كۆپەيتكۈچى a^{2}+2a+1. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(a+1\right)^{2}}=\sqrt{0}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
a+1=0 a+1=0
ئاددىيلاشتۇرۇڭ.
a=-1 a=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
a=-1
تەڭلىمە يېشىلدى. يېشىش ئۇسۇلى ئوخشاش.