ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

p+q=2 pq=1\times 1=1
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى a^{2}+pa+qa+1 دېگەن شەكىلدە قايتا يېزىش كېرەك. p ۋە q نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
p=1 q=1
pq مۇسبەت، شۇڭا p بىلەن q نىڭ بەلگىسى ئوخشاش p+q مۇسبەت، شۇڭا p بىلەن q نىڭ ھەر ئىككىسى مۇسبەت. ئۇنداق جۈپ پەقەت سىستېما يېشىش ئۇسۇلىدۇر.
\left(a^{2}+a\right)+\left(a+1\right)
a^{2}+2a+1 نى \left(a^{2}+a\right)+\left(a+1\right) شەكلىدە قايتا يېزىڭ.
a\left(a+1\right)+a+1
a^{2}+a دىن a نى چىقىرىڭ.
\left(a+1\right)\left(a+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا a+1 نى چىقىرىڭ.
\left(a+1\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(a^{2}+2a+1)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
\left(a+1\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
a^{2}+2a+1=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
a=\frac{-2±\sqrt{2^{2}-4}}{2}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
a=\frac{-2±\sqrt{4-4}}{2}
2 نىڭ كىۋادراتىنى تېپىڭ.
a=\frac{-2±\sqrt{0}}{2}
4 نى -4 گە قوشۇڭ.
a=\frac{-2±0}{2}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
a^{2}+2a+1=\left(a-\left(-1\right)\right)\left(a-\left(-1\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. -1 نى x_{1} گە ۋە -1 نى x_{2} گە ئالماشتۇرۇڭ.
a^{2}+2a+1=\left(a+1\right)\left(a+1\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.