x نى يېشىش
x=\frac{\left(\frac{V}{\pi }\right)^{2}}{4}
V\geq 0
V نى يېشىش (complex solution)
V=2\pi \sqrt{x}
x نى يېشىش (complex solution)
x=\frac{\left(\frac{V}{\pi }\right)^{2}}{4}
|\frac{arg(V^{2})}{2}-arg(V)|<\pi \text{ or }V=0
V نى يېشىش
V=2\pi \sqrt{x}
x\geq 0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
4\pi \sqrt{\frac{x}{4}}=V
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\frac{4\pi \sqrt{\frac{1}{4}x}}{4\pi }=\frac{V}{4\pi }
ھەر ئىككى تەرەپنى 4\pi گە بۆلۈڭ.
\sqrt{\frac{1}{4}x}=\frac{V}{4\pi }
4\pi گە بۆلگەندە 4\pi گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
\frac{1}{4}x=\frac{V^{2}}{16\pi ^{2}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادراتىنى چىقىرىڭ.
\frac{\frac{1}{4}x}{\frac{1}{4}}=\frac{V^{2}}{\frac{1}{4}\times 16\pi ^{2}}
ھەر ئىككى تەرەپنى 4 گە كۆپەيتىڭ.
x=\frac{V^{2}}{\frac{1}{4}\times 16\pi ^{2}}
\frac{1}{4} گە بۆلگەندە \frac{1}{4} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=\frac{V^{2}}{4\pi ^{2}}
\frac{V^{2}}{16\pi ^{2}} نى \frac{1}{4} نىڭ ئەكس سانىغا كۆپەيتىش ئارقىلىق \frac{V^{2}}{16\pi ^{2}} نى \frac{1}{4} گە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}