N نى يېشىش
\left\{\begin{matrix}N=\frac{k}{9}+\frac{V}{\pi k^{2}}\text{, }&k\neq 0\\N\in \mathrm{R}\text{, }&V=0\text{ and }k=0\end{matrix}\right.
V نى يېشىش
V=\frac{\pi \left(9N-k\right)k^{2}}{9}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
V=\pi k^{2}N-\frac{1}{9}\pi k^{3}
تارقىتىش قانۇنى بويىچە \frac{1}{9}\pi k^{2} نى 9N-k گە كۆپەيتىڭ.
\pi k^{2}N-\frac{1}{9}\pi k^{3}=V
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\pi k^{2}N=V+\frac{1}{9}\pi k^{3}
\frac{1}{9}\pi k^{3} نى ھەر ئىككى تەرەپكە قوشۇڭ.
\pi k^{2}N=\frac{\pi k^{3}}{9}+V
تەڭلىمە ئۆلچەملىك بولدى.
\frac{\pi k^{2}N}{\pi k^{2}}=\frac{\frac{\pi k^{3}}{9}+V}{\pi k^{2}}
ھەر ئىككى تەرەپنى \pi k^{2} گە بۆلۈڭ.
N=\frac{\frac{\pi k^{3}}{9}+V}{\pi k^{2}}
\pi k^{2} گە بۆلگەندە \pi k^{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
N=\frac{k}{9}+\frac{V}{\pi k^{2}}
V+\frac{\pi k^{3}}{9} نى \pi k^{2} كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}