O نى يېشىش (complex solution)
\left\{\begin{matrix}O=-\frac{4-x}{2y}\text{, }&y\neq 0\\O\in \mathrm{C}\text{, }&x=4\text{ and }y=0\end{matrix}\right.
O نى يېشىش
\left\{\begin{matrix}O=-\frac{4-x}{2y}\text{, }&y\neq 0\\O\in \mathrm{R}\text{, }&x=4\text{ and }y=0\end{matrix}\right.
x نى يېشىش
x=2\left(Oy+2\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
yO=\frac{x}{2}-2
تەڭلىمە ئۆلچەملىك بولدى.
\frac{yO}{y}=\frac{\frac{x}{2}-2}{y}
ھەر ئىككى تەرەپنى y گە بۆلۈڭ.
O=\frac{\frac{x}{2}-2}{y}
y گە بۆلگەندە y گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
O=\frac{x-4}{2y}
\frac{x}{2}-2 نى y كە بۆلۈڭ.
yO=\frac{x}{2}-2
تەڭلىمە ئۆلچەملىك بولدى.
\frac{yO}{y}=\frac{\frac{x}{2}-2}{y}
ھەر ئىككى تەرەپنى y گە بۆلۈڭ.
O=\frac{\frac{x}{2}-2}{y}
y گە بۆلگەندە y گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
O=\frac{x-4}{2y}
\frac{x}{2}-2 نى y كە بۆلۈڭ.
\frac{1}{2}x-2=Oy
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\frac{1}{2}x=Oy+2
2 نى ھەر ئىككى تەرەپكە قوشۇڭ.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{Oy+2}{\frac{1}{2}}
ھەر ئىككى تەرەپنى 2 گە كۆپەيتىڭ.
x=\frac{Oy+2}{\frac{1}{2}}
\frac{1}{2} گە بۆلگەندە \frac{1}{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=2Oy+4
Oy+2 نى \frac{1}{2} نىڭ ئەكس سانىغا كۆپەيتىش ئارقىلىق Oy+2 نى \frac{1}{2} گە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}