E نى يېشىش (complex solution)
\left\{\begin{matrix}E=-\frac{4y+y^{2}-2x}{x^{2}}\text{, }&x\neq 0\\E\in \mathrm{C}\text{, }&\left(y=0\text{ or }y=-4\right)\text{ and }x=0\end{matrix}\right.
E نى يېشىش
\left\{\begin{matrix}E=-\frac{4y+y^{2}-2x}{x^{2}}\text{, }&x\neq 0\\E\in \mathrm{R}\text{, }&\left(y=0\text{ or }y=-4\right)\text{ and }x=0\end{matrix}\right.
x نى يېشىش (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{1-4Ey-Ey^{2}}+1}{E}\text{; }x=\frac{-\sqrt{1-4Ey-Ey^{2}}+1}{E}\text{, }&E\neq 0\\x=\frac{y\left(y+4\right)}{2}\text{, }&E=0\end{matrix}\right.
x نى يېشىش
\left\{\begin{matrix}x=\frac{\sqrt{1-4Ey-Ey^{2}}+1}{E}\text{; }x=\frac{-\sqrt{1-4Ey-Ey^{2}}+1}{E}\text{, }&\left(y\neq -4\text{ and }y\neq 0\text{ and }E=\frac{1}{y^{2}+4y}\right)\text{ or }\left(E\neq 0\text{ and }y\geq -4\text{ and }y\leq 0\text{ and }E\geq \frac{1}{y^{2}+4y}\right)\text{ or }\left(E\neq 0\text{ and }y\geq 0\text{ and }E\leq \frac{1}{y^{2}+4y}\right)\text{ or }\left(E\neq 0\text{ and }y=0\right)\text{ or }\left(E\neq 0\text{ and }y\leq -4\text{ and }E\leq \frac{1}{y^{2}+4y}\right)\text{ or }\left(E\neq 0\text{ and }y=-4\right)\text{ or }\left(E=\frac{1}{y^{2}+4y}\text{ and }y<0\text{ and }y>-4\right)\text{ or }\left(E=\frac{1}{y^{2}+4y}\text{ and }y>0\right)\text{ or }\left(E=\frac{1}{y^{2}+4y}\text{ and }y<-4\right)\\x=\frac{y\left(y+4\right)}{2}\text{, }&E=0\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
Ex^{2}-2x+4y=-y^{2}
ھەر ئىككى تەرەپتىن y^{2} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
Ex^{2}+4y=-y^{2}+2x
2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
Ex^{2}=-y^{2}+2x-4y
ھەر ئىككى تەرەپتىن 4y نى ئېلىڭ.
x^{2}E=2x-y^{2}-4y
تەڭلىمە ئۆلچەملىك بولدى.
\frac{x^{2}E}{x^{2}}=\frac{2x-y^{2}-4y}{x^{2}}
ھەر ئىككى تەرەپنى x^{2} گە بۆلۈڭ.
E=\frac{2x-y^{2}-4y}{x^{2}}
x^{2} گە بۆلگەندە x^{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
Ex^{2}-2x+4y=-y^{2}
ھەر ئىككى تەرەپتىن y^{2} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
Ex^{2}+4y=-y^{2}+2x
2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
Ex^{2}=-y^{2}+2x-4y
ھەر ئىككى تەرەپتىن 4y نى ئېلىڭ.
x^{2}E=2x-y^{2}-4y
تەڭلىمە ئۆلچەملىك بولدى.
\frac{x^{2}E}{x^{2}}=\frac{2x-y^{2}-4y}{x^{2}}
ھەر ئىككى تەرەپنى x^{2} گە بۆلۈڭ.
E=\frac{2x-y^{2}-4y}{x^{2}}
x^{2} گە بۆلگەندە x^{2} گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}