ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-12 ab=9\times 4=36
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 9y^{2}+ay+by+4 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 36 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-6 b=-6
-12 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(9y^{2}-6y\right)+\left(-6y+4\right)
9y^{2}-12y+4 نى \left(9y^{2}-6y\right)+\left(-6y+4\right) شەكلىدە قايتا يېزىڭ.
3y\left(3y-2\right)-2\left(3y-2\right)
بىرىنچى گۇرۇپپىدىن 3y نى، ئىككىنچى گۇرۇپپىدىن -2 نى چىقىرىڭ.
\left(3y-2\right)\left(3y-2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3y-2 نى چىقىرىڭ.
\left(3y-2\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(9y^{2}-12y+4)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
gcf(9,-12,4)=1
كوئېففىتسېنتلارنىڭ ئەڭ چوڭ ئومۇمىي بۆلگۈچىسىنى تېپىڭ.
\sqrt{9y^{2}}=3y
باش ئەزا 9y^{2} نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\sqrt{4}=2
ئاياغ ئەزا 4 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\left(3y-2\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
9y^{2}-12y+4=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 4}}{2\times 9}
-12 نىڭ كىۋادراتىنى تېپىڭ.
y=\frac{-\left(-12\right)±\sqrt{144-36\times 4}}{2\times 9}
-4 نى 9 كە كۆپەيتىڭ.
y=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 9}
-36 نى 4 كە كۆپەيتىڭ.
y=\frac{-\left(-12\right)±\sqrt{0}}{2\times 9}
144 نى -144 گە قوشۇڭ.
y=\frac{-\left(-12\right)±0}{2\times 9}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
y=\frac{12±0}{2\times 9}
-12 نىڭ قارشىسى 12 دۇر.
y=\frac{12±0}{18}
2 نى 9 كە كۆپەيتىڭ.
9y^{2}-12y+4=9\left(y-\frac{2}{3}\right)\left(y-\frac{2}{3}\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{2}{3} نى x_{1} گە ۋە \frac{2}{3} نى x_{2} گە ئالماشتۇرۇڭ.
9y^{2}-12y+4=9\times \frac{3y-2}{3}\left(y-\frac{2}{3}\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق y دىن \frac{2}{3} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
9y^{2}-12y+4=9\times \frac{3y-2}{3}\times \frac{3y-2}{3}
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق y دىن \frac{2}{3} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
9y^{2}-12y+4=9\times \frac{\left(3y-2\right)\left(3y-2\right)}{3\times 3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3y-2}{3} نى \frac{3y-2}{3} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
9y^{2}-12y+4=9\times \frac{\left(3y-2\right)\left(3y-2\right)}{9}
3 نى 3 كە كۆپەيتىڭ.
9y^{2}-12y+4=\left(3y-2\right)\left(3y-2\right)
9 بىلەن 9 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 9 نى يېيىشتۈرۈڭ.