ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-30 ab=9\times 25=225
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 9x^{2}+ax+bx+25 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 225 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-15 b=-15
-30 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
9x^{2}-30x+25 نى \left(9x^{2}-15x\right)+\left(-15x+25\right) شەكلىدە قايتا يېزىڭ.
3x\left(3x-5\right)-5\left(3x-5\right)
بىرىنچى گۇرۇپپىدىن 3x نى، ئىككىنچى گۇرۇپپىدىن -5 نى چىقىرىڭ.
\left(3x-5\right)\left(3x-5\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x-5 نى چىقىرىڭ.
\left(3x-5\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(9x^{2}-30x+25)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
gcf(9,-30,25)=1
كوئېففىتسېنتلارنىڭ ئەڭ چوڭ ئومۇمىي بۆلگۈچىسىنى تېپىڭ.
\sqrt{9x^{2}}=3x
باش ئەزا 9x^{2} نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\sqrt{25}=5
ئاياغ ئەزا 25 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\left(3x-5\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
9x^{2}-30x+25=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
-30 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
-4 نى 9 كە كۆپەيتىڭ.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
-36 نى 25 كە كۆپەيتىڭ.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
900 نى -900 گە قوشۇڭ.
x=\frac{-\left(-30\right)±0}{2\times 9}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{30±0}{2\times 9}
-30 نىڭ قارشىسى 30 دۇر.
x=\frac{30±0}{18}
2 نى 9 كە كۆپەيتىڭ.
9x^{2}-30x+25=9\left(x-\frac{5}{3}\right)\left(x-\frac{5}{3}\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{5}{3} نى x_{1} گە ۋە \frac{5}{3} نى x_{2} گە ئالماشتۇرۇڭ.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\left(x-\frac{5}{3}\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{5}{3} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\times \frac{3x-5}{3}
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{5}{3} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{3\times 3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3x-5}{3} نى \frac{3x-5}{3} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{9}
3 نى 3 كە كۆپەيتىڭ.
9x^{2}-30x+25=\left(3x-5\right)\left(3x-5\right)
9 بىلەن 9 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 9 نى يېيىشتۈرۈڭ.