كۆپەيتكۈچى
\left(9x-10\right)^{2}
ھېسابلاش
\left(9x-10\right)^{2}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=-180 ab=81\times 100=8100
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 81x^{2}+ax+bx+100 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,-8100 -2,-4050 -3,-2700 -4,-2025 -5,-1620 -6,-1350 -9,-900 -10,-810 -12,-675 -15,-540 -18,-450 -20,-405 -25,-324 -27,-300 -30,-270 -36,-225 -45,-180 -50,-162 -54,-150 -60,-135 -75,-108 -81,-100 -90,-90
ab مۇسبەت، شۇڭا a بىلەن b نىڭ بەلگىسى ئوخشاش a+b مەنپىي، شۇڭا a بىلەن b نىڭ ھەر ئىككىسى مەنپىي. ھاسىلات 8100 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1-8100=-8101 -2-4050=-4052 -3-2700=-2703 -4-2025=-2029 -5-1620=-1625 -6-1350=-1356 -9-900=-909 -10-810=-820 -12-675=-687 -15-540=-555 -18-450=-468 -20-405=-425 -25-324=-349 -27-300=-327 -30-270=-300 -36-225=-261 -45-180=-225 -50-162=-212 -54-150=-204 -60-135=-195 -75-108=-183 -81-100=-181 -90-90=-180
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-90 b=-90
-180 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(81x^{2}-90x\right)+\left(-90x+100\right)
81x^{2}-180x+100 نى \left(81x^{2}-90x\right)+\left(-90x+100\right) شەكلىدە قايتا يېزىڭ.
9x\left(9x-10\right)-10\left(9x-10\right)
بىرىنچى گۇرۇپپىدىن 9x نى، ئىككىنچى گۇرۇپپىدىن -10 نى چىقىرىڭ.
\left(9x-10\right)\left(9x-10\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 9x-10 نى چىقىرىڭ.
\left(9x-10\right)^{2}
ئىككى ئەزالىق كىۋادرات شەكلىدە قايتا يېزىڭ.
factor(81x^{2}-180x+100)
ئۈچ ئەزالىق ئۈچ ئەزالىق كىۋادرات شەكلىدە بولۇپ، بىر ئومۇمىي بۆلگۈچى ئارقىلىق كۆپەيتىلىشى مۇمكىن. باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنى تېپىش ئارقىلىق ئۈچ ئەزالىق كىۋادراتنىڭ كۆپەيتكۈچىسىنى تېپىشقا بولىدۇ.
gcf(81,-180,100)=1
كوئېففىتسېنتلارنىڭ ئەڭ چوڭ ئومۇمىي بۆلگۈچىسىنى تېپىڭ.
\sqrt{81x^{2}}=9x
باش ئەزا 81x^{2} نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\sqrt{100}=10
ئاياغ ئەزا 100 نىڭ كىۋادرات يىلتىزىنى تېپىڭ.
\left(9x-10\right)^{2}
ئۈچ ئەزالىق كىۋادرات باش ۋە ئاياغ ئەزالارنىڭ كىۋادرات يىلتىزىنىڭ يىغىندىسى ياكى ئايرىمىسى بولغان ئىككى ئەزالىق كىۋادراتتۇر.
81x^{2}-180x+100=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 81\times 100}}{2\times 81}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 81\times 100}}{2\times 81}
-180 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-180\right)±\sqrt{32400-324\times 100}}{2\times 81}
-4 نى 81 كە كۆپەيتىڭ.
x=\frac{-\left(-180\right)±\sqrt{32400-32400}}{2\times 81}
-324 نى 100 كە كۆپەيتىڭ.
x=\frac{-\left(-180\right)±\sqrt{0}}{2\times 81}
32400 نى -32400 گە قوشۇڭ.
x=\frac{-\left(-180\right)±0}{2\times 81}
0 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{180±0}{2\times 81}
-180 نىڭ قارشىسى 180 دۇر.
x=\frac{180±0}{162}
2 نى 81 كە كۆپەيتىڭ.
81x^{2}-180x+100=81\left(x-\frac{10}{9}\right)\left(x-\frac{10}{9}\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{10}{9} نى x_{1} گە ۋە \frac{10}{9} نى x_{2} گە ئالماشتۇرۇڭ.
81x^{2}-180x+100=81\times \frac{9x-10}{9}\left(x-\frac{10}{9}\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{10}{9} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
81x^{2}-180x+100=81\times \frac{9x-10}{9}\times \frac{9x-10}{9}
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{10}{9} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
81x^{2}-180x+100=81\times \frac{\left(9x-10\right)\left(9x-10\right)}{9\times 9}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{9x-10}{9} نى \frac{9x-10}{9} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
81x^{2}-180x+100=81\times \frac{\left(9x-10\right)\left(9x-10\right)}{81}
9 نى 9 كە كۆپەيتىڭ.
81x^{2}-180x+100=\left(9x-10\right)\left(9x-10\right)
81 بىلەن 81 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 81 نى يېيىشتۈرۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}