ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

8x^{2}+8x-1=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-8±\sqrt{8^{2}-4\times 8\left(-1\right)}}{2\times 8}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 8 نى a گە، 8 نى b گە ۋە -1 نى c گە ئالماشتۇرۇڭ.
x=\frac{-8±4\sqrt{6}}{16}
ھېسابلاڭ.
x=\frac{\sqrt{6}}{4}-\frac{1}{2} x=-\frac{\sqrt{6}}{4}-\frac{1}{2}
x=\frac{-8±4\sqrt{6}}{16} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
8\left(x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\leq 0
ئېرىشكەن يېشىش ئۇسۇلى ئارقىلىق تەڭسىزلىكنى قايتا يېزىڭ.
x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
ھاسىلاتنىڭ ≤0 بولۇشى ئۈچۈن x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right) ۋە x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right) دىن بىرى ≥0 ۋە يەنە بىرى ≤0 بولۇشى كېرەك. x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 ۋە x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \emptyset
بۇ ھەرقانداق x ئۈچۈن خاتا.
x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0 ۋە x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\in \left[-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\right] دۇر.
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.