ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

8x^{2}+2x-21=0
ھەر ئىككى تەرەپتىن 21 نى ئېلىڭ.
a+b=2 ab=8\left(-21\right)=-168
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 8x^{2}+ax+bx-21 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -168 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-12 b=14
2 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(8x^{2}-12x\right)+\left(14x-21\right)
8x^{2}+2x-21 نى \left(8x^{2}-12x\right)+\left(14x-21\right) شەكلىدە قايتا يېزىڭ.
4x\left(2x-3\right)+7\left(2x-3\right)
بىرىنچى گۇرۇپپىدىن 4x نى، ئىككىنچى گۇرۇپپىدىن 7 نى چىقىرىڭ.
\left(2x-3\right)\left(4x+7\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 2x-3 نى چىقىرىڭ.
x=\frac{3}{2} x=-\frac{7}{4}
تەڭلىمىنى يېشىش ئۈچۈن 2x-3=0 بىلەن 4x+7=0 نى يېشىڭ.
8x^{2}+2x=21
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
8x^{2}+2x-21=21-21
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 21 نى ئېلىڭ.
8x^{2}+2x-21=0
21 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x=\frac{-2±\sqrt{2^{2}-4\times 8\left(-21\right)}}{2\times 8}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 8 نى a گە، 2 نى b گە ۋە -21 نى c گە ئالماشتۇرۇڭ.
x=\frac{-2±\sqrt{4-4\times 8\left(-21\right)}}{2\times 8}
2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-2±\sqrt{4-32\left(-21\right)}}{2\times 8}
-4 نى 8 كە كۆپەيتىڭ.
x=\frac{-2±\sqrt{4+672}}{2\times 8}
-32 نى -21 كە كۆپەيتىڭ.
x=\frac{-2±\sqrt{676}}{2\times 8}
4 نى 672 گە قوشۇڭ.
x=\frac{-2±26}{2\times 8}
676 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-2±26}{16}
2 نى 8 كە كۆپەيتىڭ.
x=\frac{24}{16}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-2±26}{16} نى يېشىڭ. -2 نى 26 گە قوشۇڭ.
x=\frac{3}{2}
8 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{24}{16} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{28}{16}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-2±26}{16} نى يېشىڭ. -2 دىن 26 نى ئېلىڭ.
x=-\frac{7}{4}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-28}{16} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{3}{2} x=-\frac{7}{4}
تەڭلىمە يېشىلدى.
8x^{2}+2x=21
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{8x^{2}+2x}{8}=\frac{21}{8}
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
x^{2}+\frac{2}{8}x=\frac{21}{8}
8 گە بۆلگەندە 8 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{4}x=\frac{21}{8}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{2}{8} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{21}{8}+\left(\frac{1}{8}\right)^{2}
\frac{1}{4}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{8} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{8} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{21}{8}+\frac{1}{64}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{8} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{169}{64}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{21}{8} نى \frac{1}{64} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{1}{8}\right)^{2}=\frac{169}{64}
كۆپەيتكۈچى x^{2}+\frac{1}{4}x+\frac{1}{64}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{169}{64}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{8}=\frac{13}{8} x+\frac{1}{8}=-\frac{13}{8}
ئاددىيلاشتۇرۇڭ.
x=\frac{3}{2} x=-\frac{7}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{8} نى ئېلىڭ.