ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

8x^{2}+17x+2=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-17±\sqrt{17^{2}-4\times 8\times 2}}{2\times 8}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 8 نى a گە، 17 نى b گە ۋە 2 نى c گە ئالماشتۇرۇڭ.
x=\frac{-17±15}{16}
ھېسابلاڭ.
x=-\frac{1}{8} x=-2
x=\frac{-17±15}{16} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
8\left(x+\frac{1}{8}\right)\left(x+2\right)\leq 0
ئېرىشكەن يېشىش ئۇسۇلى ئارقىلىق تەڭسىزلىكنى قايتا يېزىڭ.
x+\frac{1}{8}\geq 0 x+2\leq 0
ھاسىلاتنىڭ ≤0 بولۇشى ئۈچۈن x+\frac{1}{8} ۋە x+2 دىن بىرى ≥0 ۋە يەنە بىرى ≤0 بولۇشى كېرەك. x+\frac{1}{8}\geq 0 ۋە x+2\leq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \emptyset
بۇ ھەرقانداق x ئۈچۈن خاتا.
x+2\geq 0 x+\frac{1}{8}\leq 0
x+\frac{1}{8}\leq 0 ۋە x+2\geq 0 بولغان چاغدىكى ئەھۋالنى ئويلىشىڭ.
x\in \begin{bmatrix}-2,-\frac{1}{8}\end{bmatrix}
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\in \left[-2,-\frac{1}{8}\right] دۇر.
x\in \begin{bmatrix}-2,-\frac{1}{8}\end{bmatrix}
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.