ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2\left(4x^{2}+3x\right)
2 نى ئاجرىتىپ چىقىرىڭ.
x\left(4x+3\right)
4x^{2}+3x نى ئويلىشىپ كۆرۈڭ. x نى ئاجرىتىپ چىقىرىڭ.
2x\left(4x+3\right)
تولۇق كۆپەيتىلگەن ئىپادىنى قايتا يېزىڭ.
8x^{2}+6x=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-6±\sqrt{6^{2}}}{2\times 8}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±6}{2\times 8}
6^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-6±6}{16}
2 نى 8 كە كۆپەيتىڭ.
x=\frac{0}{16}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±6}{16} نى يېشىڭ. -6 نى 6 گە قوشۇڭ.
x=0
0 نى 16 كە بۆلۈڭ.
x=-\frac{12}{16}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±6}{16} نى يېشىڭ. -6 دىن 6 نى ئېلىڭ.
x=-\frac{3}{4}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-12}{16} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
8x^{2}+6x=8x\left(x-\left(-\frac{3}{4}\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. 0 نى x_{1} گە ۋە -\frac{3}{4} نى x_{2} گە ئالماشتۇرۇڭ.
8x^{2}+6x=8x\left(x+\frac{3}{4}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
8x^{2}+6x=8x\times \frac{4x+3}{4}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{3}{4} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
8x^{2}+6x=2x\left(4x+3\right)
8 بىلەن 4 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 4 نى يېيىشتۈرۈڭ.