x نى يېشىش
x=-57
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
1350=\left(75+x\right)\left(18-x\right)
75 گە 18 نى كۆپەيتىپ 1350 نى چىقىرىڭ.
1350=1350-57x-x^{2}
تارقىتىش قانۇنى بويىچە 75+x نى 18-x گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
1350-57x-x^{2}=1350
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
1350-57x-x^{2}-1350=0
ھەر ئىككى تەرەپتىن 1350 نى ئېلىڭ.
-57x-x^{2}=0
1350 دىن 1350 نى ئېلىپ 0 نى چىقىرىڭ.
-x^{2}-57x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-57\right)±\sqrt{\left(-57\right)^{2}}}{2\left(-1\right)}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا -1 نى a گە، -57 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-57\right)±57}{2\left(-1\right)}
\left(-57\right)^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{57±57}{2\left(-1\right)}
-57 نىڭ قارشىسى 57 دۇر.
x=\frac{57±57}{-2}
2 نى -1 كە كۆپەيتىڭ.
x=\frac{114}{-2}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{57±57}{-2} نى يېشىڭ. 57 نى 57 گە قوشۇڭ.
x=-57
114 نى -2 كە بۆلۈڭ.
x=\frac{0}{-2}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{57±57}{-2} نى يېشىڭ. 57 دىن 57 نى ئېلىڭ.
x=0
0 نى -2 كە بۆلۈڭ.
x=-57 x=0
تەڭلىمە يېشىلدى.
1350=\left(75+x\right)\left(18-x\right)
75 گە 18 نى كۆپەيتىپ 1350 نى چىقىرىڭ.
1350=1350-57x-x^{2}
تارقىتىش قانۇنى بويىچە 75+x نى 18-x گە كۆپەيتىپ، ئوخشاش ئەزالارنى بىرىكتۈرۈڭ.
1350-57x-x^{2}=1350
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
-57x-x^{2}=1350-1350
ھەر ئىككى تەرەپتىن 1350 نى ئېلىڭ.
-57x-x^{2}=0
1350 دىن 1350 نى ئېلىپ 0 نى چىقىرىڭ.
-x^{2}-57x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{-x^{2}-57x}{-1}=\frac{0}{-1}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x^{2}+\left(-\frac{57}{-1}\right)x=\frac{0}{-1}
-1 گە بۆلگەندە -1 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+57x=\frac{0}{-1}
-57 نى -1 كە بۆلۈڭ.
x^{2}+57x=0
0 نى -1 كە بۆلۈڭ.
x^{2}+57x+\left(\frac{57}{2}\right)^{2}=\left(\frac{57}{2}\right)^{2}
57، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{57}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{57}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+57x+\frac{3249}{4}=\frac{3249}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{57}{2} نىڭ كىۋادراتىنى تېپىڭ.
\left(x+\frac{57}{2}\right)^{2}=\frac{3249}{4}
كۆپەيتكۈچى x^{2}+57x+\frac{3249}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{57}{2}\right)^{2}}=\sqrt{\frac{3249}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{57}{2}=\frac{57}{2} x+\frac{57}{2}=-\frac{57}{2}
ئاددىيلاشتۇرۇڭ.
x=0 x=-57
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{57}{2} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}