كۆپەيتكۈچى
72\left(n-\frac{1-\sqrt{10}}{9}\right)\left(n-\frac{\sqrt{10}+1}{9}\right)
ھېسابلاش
72n^{2}-16n-8
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
72n^{2}-16n-8=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
n=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 72\left(-8\right)}}{2\times 72}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
n=\frac{-\left(-16\right)±\sqrt{256-4\times 72\left(-8\right)}}{2\times 72}
-16 نىڭ كىۋادراتىنى تېپىڭ.
n=\frac{-\left(-16\right)±\sqrt{256-288\left(-8\right)}}{2\times 72}
-4 نى 72 كە كۆپەيتىڭ.
n=\frac{-\left(-16\right)±\sqrt{256+2304}}{2\times 72}
-288 نى -8 كە كۆپەيتىڭ.
n=\frac{-\left(-16\right)±\sqrt{2560}}{2\times 72}
256 نى 2304 گە قوشۇڭ.
n=\frac{-\left(-16\right)±16\sqrt{10}}{2\times 72}
2560 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
n=\frac{16±16\sqrt{10}}{2\times 72}
-16 نىڭ قارشىسى 16 دۇر.
n=\frac{16±16\sqrt{10}}{144}
2 نى 72 كە كۆپەيتىڭ.
n=\frac{16\sqrt{10}+16}{144}
± پىلۇس بولغاندىكى تەڭلىمە n=\frac{16±16\sqrt{10}}{144} نى يېشىڭ. 16 نى 16\sqrt{10} گە قوشۇڭ.
n=\frac{\sqrt{10}+1}{9}
16+16\sqrt{10} نى 144 كە بۆلۈڭ.
n=\frac{16-16\sqrt{10}}{144}
± مىنۇس بولغاندىكى تەڭلىمە n=\frac{16±16\sqrt{10}}{144} نى يېشىڭ. 16 دىن 16\sqrt{10} نى ئېلىڭ.
n=\frac{1-\sqrt{10}}{9}
16-16\sqrt{10} نى 144 كە بۆلۈڭ.
72n^{2}-16n-8=72\left(n-\frac{\sqrt{10}+1}{9}\right)\left(n-\frac{1-\sqrt{10}}{9}\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{1+\sqrt{10}}{9} نى x_{1} گە ۋە \frac{1-\sqrt{10}}{9} نى x_{2} گە ئالماشتۇرۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}