x نى يېشىش
x=-\log_{7}\left(3\right)\approx -0.564575034
x نى يېشىش (complex solution)
x=\frac{\pi n_{1}i}{\ln(7)}-\log_{7}\left(3\right)
n_{1}\in \mathrm{Z}
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
7^{2x}=\frac{1}{9}
دەرىجە كۆرسەتكۈچى ۋە لوگارىفما قائىدىلىرى ئارقىلىق تەڭلىمىنى يېشىڭ.
\log(7^{2x})=\log(\frac{1}{9})
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ لوگارىفمىسىنى چىقىرىڭ.
2x\log(7)=\log(\frac{1}{9})
دەرىجىگە كۆتۈرۈلگەن ساننىڭ لوگارىفمىسى شۇ ساننىڭ لوگارىفمىسىنى ھەسسىلەيدىغان دەرىجىدۇر.
2x=\frac{\log(\frac{1}{9})}{\log(7)}
ھەر ئىككى تەرەپنى \log(7) گە بۆلۈڭ.
2x=\log_{7}\left(\frac{1}{9}\right)
ئاساسىي فورمۇلا \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) نىڭ ئۆزگىرىش ئارقىلىق.
x=-\frac{2\log_{7}\left(3\right)}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}