كۆپەيتكۈچى
\left(6y-5\right)\left(y+2\right)
ھېسابلاش
\left(6y-5\right)\left(y+2\right)
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
a+b=7 ab=6\left(-10\right)=-60
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 6y^{2}+ay+by-10 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -60 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-5 b=12
7 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(6y^{2}-5y\right)+\left(12y-10\right)
6y^{2}+7y-10 نى \left(6y^{2}-5y\right)+\left(12y-10\right) شەكلىدە قايتا يېزىڭ.
y\left(6y-5\right)+2\left(6y-5\right)
بىرىنچى گۇرۇپپىدىن y نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(6y-5\right)\left(y+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 6y-5 نى چىقىرىڭ.
6y^{2}+7y-10=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
y=\frac{-7±\sqrt{7^{2}-4\times 6\left(-10\right)}}{2\times 6}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
y=\frac{-7±\sqrt{49-4\times 6\left(-10\right)}}{2\times 6}
7 نىڭ كىۋادراتىنى تېپىڭ.
y=\frac{-7±\sqrt{49-24\left(-10\right)}}{2\times 6}
-4 نى 6 كە كۆپەيتىڭ.
y=\frac{-7±\sqrt{49+240}}{2\times 6}
-24 نى -10 كە كۆپەيتىڭ.
y=\frac{-7±\sqrt{289}}{2\times 6}
49 نى 240 گە قوشۇڭ.
y=\frac{-7±17}{2\times 6}
289 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
y=\frac{-7±17}{12}
2 نى 6 كە كۆپەيتىڭ.
y=\frac{10}{12}
± پىلۇس بولغاندىكى تەڭلىمە y=\frac{-7±17}{12} نى يېشىڭ. -7 نى 17 گە قوشۇڭ.
y=\frac{5}{6}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{10}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
y=-\frac{24}{12}
± مىنۇس بولغاندىكى تەڭلىمە y=\frac{-7±17}{12} نى يېشىڭ. -7 دىن 17 نى ئېلىڭ.
y=-2
-24 نى 12 كە بۆلۈڭ.
6y^{2}+7y-10=6\left(y-\frac{5}{6}\right)\left(y-\left(-2\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{5}{6} نى x_{1} گە ۋە -2 نى x_{2} گە ئالماشتۇرۇڭ.
6y^{2}+7y-10=6\left(y-\frac{5}{6}\right)\left(y+2\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
6y^{2}+7y-10=6\times \frac{6y-5}{6}\left(y+2\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق y دىن \frac{5}{6} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
6y^{2}+7y-10=\left(6y-5\right)\left(y+2\right)
6 بىلەن 6 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 6 نى يېيىشتۈرۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}