ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-1 ab=6\left(-2\right)=-12
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 6x^{2}+ax+bx-2 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-12 2,-6 3,-4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-12=-11 2-6=-4 3-4=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-4 b=3
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(6x^{2}-4x\right)+\left(3x-2\right)
6x^{2}-x-2 نى \left(6x^{2}-4x\right)+\left(3x-2\right) شەكلىدە قايتا يېزىڭ.
2x\left(3x-2\right)+3x-2
6x^{2}-4x دىن 2x نى چىقىرىڭ.
\left(3x-2\right)\left(2x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x-2 نى چىقىرىڭ.
x=\frac{2}{3} x=-\frac{1}{2}
تەڭلىمىنى يېشىش ئۈچۈن 3x-2=0 بىلەن 2x+1=0 نى يېشىڭ.
6x^{2}-x-2=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-2\right)}}{2\times 6}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 6 نى a گە، -1 نى b گە ۋە -2 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-2\right)}}{2\times 6}
-4 نى 6 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 6}
-24 نى -2 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 6}
1 نى 48 گە قوشۇڭ.
x=\frac{-\left(-1\right)±7}{2\times 6}
49 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{1±7}{2\times 6}
-1 نىڭ قارشىسى 1 دۇر.
x=\frac{1±7}{12}
2 نى 6 كە كۆپەيتىڭ.
x=\frac{8}{12}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{1±7}{12} نى يېشىڭ. 1 نى 7 گە قوشۇڭ.
x=\frac{2}{3}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{8}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{6}{12}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{1±7}{12} نى يېشىڭ. 1 دىن 7 نى ئېلىڭ.
x=-\frac{1}{2}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-6}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{2}{3} x=-\frac{1}{2}
تەڭلىمە يېشىلدى.
6x^{2}-x-2=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
6x^{2}-x-2-\left(-2\right)=-\left(-2\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
6x^{2}-x=-\left(-2\right)
-2 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
6x^{2}-x=2
0 دىن -2 نى ئېلىڭ.
\frac{6x^{2}-x}{6}=\frac{2}{6}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x^{2}-\frac{1}{6}x=\frac{2}{6}
6 گە بۆلگەندە 6 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{6}x=\frac{1}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{2}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{6}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{12} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{12} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{1}{3}+\frac{1}{144}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{12} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{49}{144}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{3} نى \frac{1}{144} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{12}\right)^{2}=\frac{49}{144}
كۆپەيتكۈچى x^{2}-\frac{1}{6}x+\frac{1}{144}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{12}=\frac{7}{12} x-\frac{1}{12}=-\frac{7}{12}
ئاددىيلاشتۇرۇڭ.
x=\frac{2}{3} x=-\frac{1}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{12} نى قوشۇڭ.