ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

6x^{2}-x-15=0
ھەر ئىككى تەرەپتىن 15 نى ئېلىڭ.
a+b=-1 ab=6\left(-15\right)=-90
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 6x^{2}+ax+bx-15 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -90 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-10 b=9
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(6x^{2}-10x\right)+\left(9x-15\right)
6x^{2}-x-15 نى \left(6x^{2}-10x\right)+\left(9x-15\right) شەكلىدە قايتا يېزىڭ.
2x\left(3x-5\right)+3\left(3x-5\right)
بىرىنچى گۇرۇپپىدىن 2x نى، ئىككىنچى گۇرۇپپىدىن 3 نى چىقىرىڭ.
\left(3x-5\right)\left(2x+3\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x-5 نى چىقىرىڭ.
x=\frac{5}{3} x=-\frac{3}{2}
تەڭلىمىنى يېشىش ئۈچۈن 3x-5=0 بىلەن 2x+3=0 نى يېشىڭ.
6x^{2}-x=15
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
6x^{2}-x-15=15-15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15 نى ئېلىڭ.
6x^{2}-x-15=0
15 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-15\right)}}{2\times 6}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 6 نى a گە، -1 نى b گە ۋە -15 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-15\right)}}{2\times 6}
-4 نى 6 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\times 6}
-24 نى -15 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\times 6}
1 نى 360 گە قوشۇڭ.
x=\frac{-\left(-1\right)±19}{2\times 6}
361 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{1±19}{2\times 6}
-1 نىڭ قارشىسى 1 دۇر.
x=\frac{1±19}{12}
2 نى 6 كە كۆپەيتىڭ.
x=\frac{20}{12}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{1±19}{12} نى يېشىڭ. 1 نى 19 گە قوشۇڭ.
x=\frac{5}{3}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{20}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{18}{12}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{1±19}{12} نى يېشىڭ. 1 دىن 19 نى ئېلىڭ.
x=-\frac{3}{2}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-18}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{5}{3} x=-\frac{3}{2}
تەڭلىمە يېشىلدى.
6x^{2}-x=15
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{6x^{2}-x}{6}=\frac{15}{6}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x^{2}-\frac{1}{6}x=\frac{15}{6}
6 گە بۆلگەندە 6 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{6}x=\frac{5}{2}
3 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{15}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{6}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{12} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{12} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{5}{2}+\frac{1}{144}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{12} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{361}{144}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{2} نى \frac{1}{144} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{12}\right)^{2}=\frac{361}{144}
كۆپەيتكۈچى x^{2}-\frac{1}{6}x+\frac{1}{144}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{361}{144}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{12}=\frac{19}{12} x-\frac{1}{12}=-\frac{19}{12}
ئاددىيلاشتۇرۇڭ.
x=\frac{5}{3} x=-\frac{3}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{12} نى قوشۇڭ.