x نى يېشىش
x=-\frac{2}{3}\approx -0.666666667
x=1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x^{2}-x-2=0
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
a+b=-1 ab=3\left(-2\right)=-6
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 3x^{2}+ax+bx-2 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-6 2,-3
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -6 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-6=-5 2-3=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-3 b=2
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(3x^{2}-3x\right)+\left(2x-2\right)
3x^{2}-x-2 نى \left(3x^{2}-3x\right)+\left(2x-2\right) شەكلىدە قايتا يېزىڭ.
3x\left(x-1\right)+2\left(x-1\right)
بىرىنچى گۇرۇپپىدىن 3x نى، ئىككىنچى گۇرۇپپىدىن 2 نى چىقىرىڭ.
\left(x-1\right)\left(3x+2\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-1 نى چىقىرىڭ.
x=1 x=-\frac{2}{3}
تەڭلىمىنى يېشىش ئۈچۈن x-1=0 بىلەن 3x+2=0 نى يېشىڭ.
6x^{2}-2x-4=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 6 نى a گە، -2 نى b گە ۋە -4 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-4\right)}}{2\times 6}
-2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-4\right)}}{2\times 6}
-4 نى 6 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 6}
-24 نى -4 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 6}
4 نى 96 گە قوشۇڭ.
x=\frac{-\left(-2\right)±10}{2\times 6}
100 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2±10}{2\times 6}
-2 نىڭ قارشىسى 2 دۇر.
x=\frac{2±10}{12}
2 نى 6 كە كۆپەيتىڭ.
x=\frac{12}{12}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{2±10}{12} نى يېشىڭ. 2 نى 10 گە قوشۇڭ.
x=1
12 نى 12 كە بۆلۈڭ.
x=-\frac{8}{12}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{2±10}{12} نى يېشىڭ. 2 دىن 10 نى ئېلىڭ.
x=-\frac{2}{3}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-8}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=1 x=-\frac{2}{3}
تەڭلىمە يېشىلدى.
6x^{2}-2x-4=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
6x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4 نى قوشۇڭ.
6x^{2}-2x=-\left(-4\right)
-4 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
6x^{2}-2x=4
0 دىن -4 نى ئېلىڭ.
\frac{6x^{2}-2x}{6}=\frac{4}{6}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{4}{6}
6 گە بۆلگەندە 6 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{1}{3}x=\frac{4}{6}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-2}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}-\frac{1}{3}x=\frac{2}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{4}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{6} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{6} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{6} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{2}{3} نى \frac{1}{36} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
كۆپەيتكۈچى x^{2}-\frac{1}{3}x+\frac{1}{36}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
ئاددىيلاشتۇرۇڭ.
x=1 x=-\frac{2}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{6} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}