ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=7 ab=6\left(-20\right)=-120
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 6x^{2}+ax+bx-20 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مۇسبەت، شۇڭا مۇسبەت ساننىڭ مۇتلەق قىممىتى مەنپىي ساننىڭكىدىن چوڭ. ھاسىلات -120 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-8 b=15
7 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(6x^{2}-8x\right)+\left(15x-20\right)
6x^{2}+7x-20 نى \left(6x^{2}-8x\right)+\left(15x-20\right) شەكلىدە قايتا يېزىڭ.
2x\left(3x-4\right)+5\left(3x-4\right)
بىرىنچى گۇرۇپپىدىن 2x نى، ئىككىنچى گۇرۇپپىدىن 5 نى چىقىرىڭ.
\left(3x-4\right)\left(2x+5\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x-4 نى چىقىرىڭ.
x=\frac{4}{3} x=-\frac{5}{2}
تەڭلىمىنى يېشىش ئۈچۈن 3x-4=0 بىلەن 2x+5=0 نى يېشىڭ.
6x^{2}+7x-20=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-20\right)}}{2\times 6}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 6 نى a گە، 7 نى b گە ۋە -20 نى c گە ئالماشتۇرۇڭ.
x=\frac{-7±\sqrt{49-4\times 6\left(-20\right)}}{2\times 6}
7 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-7±\sqrt{49-24\left(-20\right)}}{2\times 6}
-4 نى 6 كە كۆپەيتىڭ.
x=\frac{-7±\sqrt{49+480}}{2\times 6}
-24 نى -20 كە كۆپەيتىڭ.
x=\frac{-7±\sqrt{529}}{2\times 6}
49 نى 480 گە قوشۇڭ.
x=\frac{-7±23}{2\times 6}
529 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-7±23}{12}
2 نى 6 كە كۆپەيتىڭ.
x=\frac{16}{12}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-7±23}{12} نى يېشىڭ. -7 نى 23 گە قوشۇڭ.
x=\frac{4}{3}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{16}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{30}{12}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-7±23}{12} نى يېشىڭ. -7 دىن 23 نى ئېلىڭ.
x=-\frac{5}{2}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-30}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=\frac{4}{3} x=-\frac{5}{2}
تەڭلىمە يېشىلدى.
6x^{2}+7x-20=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
6x^{2}+7x-20-\left(-20\right)=-\left(-20\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 20 نى قوشۇڭ.
6x^{2}+7x=-\left(-20\right)
-20 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
6x^{2}+7x=20
0 دىن -20 نى ئېلىڭ.
\frac{6x^{2}+7x}{6}=\frac{20}{6}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x^{2}+\frac{7}{6}x=\frac{20}{6}
6 گە بۆلگەندە 6 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{7}{6}x=\frac{10}{3}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{20}{6} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{10}{3}+\left(\frac{7}{12}\right)^{2}
\frac{7}{6}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{7}{12} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{7}{12} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{10}{3}+\frac{49}{144}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{7}{12} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{529}{144}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{10}{3} نى \frac{49}{144} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x+\frac{7}{12}\right)^{2}=\frac{529}{144}
كۆپەيتكۈچى x^{2}+\frac{7}{6}x+\frac{49}{144}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{7}{12}=\frac{23}{12} x+\frac{7}{12}=-\frac{23}{12}
ئاددىيلاشتۇرۇڭ.
x=\frac{4}{3} x=-\frac{5}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{7}{12} نى ئېلىڭ.