x نى يېشىش
x=-\frac{1}{28}\approx -0.035714286
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x\left(6+2\times 84x\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=-\frac{1}{28}
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 6+168x=0 نى يېشىڭ.
6x+168x^{2}=0
84 گە 2 نى كۆپەيتىپ 168 نى چىقىرىڭ.
168x^{2}+6x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-6±\sqrt{6^{2}}}{2\times 168}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 168 نى a گە، 6 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-6±6}{2\times 168}
6^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{-6±6}{336}
2 نى 168 كە كۆپەيتىڭ.
x=\frac{0}{336}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{-6±6}{336} نى يېشىڭ. -6 نى 6 گە قوشۇڭ.
x=0
0 نى 336 كە بۆلۈڭ.
x=-\frac{12}{336}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{-6±6}{336} نى يېشىڭ. -6 دىن 6 نى ئېلىڭ.
x=-\frac{1}{28}
12 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-12}{336} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=0 x=-\frac{1}{28}
تەڭلىمە يېشىلدى.
6x+168x^{2}=0
84 گە 2 نى كۆپەيتىپ 168 نى چىقىرىڭ.
168x^{2}+6x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{168x^{2}+6x}{168}=\frac{0}{168}
ھەر ئىككى تەرەپنى 168 گە بۆلۈڭ.
x^{2}+\frac{6}{168}x=\frac{0}{168}
168 گە بۆلگەندە 168 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}+\frac{1}{28}x=\frac{0}{168}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{6}{168} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x^{2}+\frac{1}{28}x=0
0 نى 168 كە بۆلۈڭ.
x^{2}+\frac{1}{28}x+\left(\frac{1}{56}\right)^{2}=\left(\frac{1}{56}\right)^{2}
\frac{1}{28}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، \frac{1}{56} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{56} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}+\frac{1}{28}x+\frac{1}{3136}=\frac{1}{3136}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق \frac{1}{56} نىڭ كىۋادراتىنى تېپىڭ.
\left(x+\frac{1}{56}\right)^{2}=\frac{1}{3136}
كۆپەيتكۈچى x^{2}+\frac{1}{28}x+\frac{1}{3136}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x+\frac{1}{56}\right)^{2}}=\sqrt{\frac{1}{3136}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x+\frac{1}{56}=\frac{1}{56} x+\frac{1}{56}=-\frac{1}{56}
ئاددىيلاشتۇرۇڭ.
x=0 x=-\frac{1}{28}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{1}{56} نى ئېلىڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}