ئاساسىي مەزمۇنغا ئاتلاش
كۆپەيتكۈچى
Tick mark Image
ھېسابلاش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-1 ab=6\left(-2\right)=-12
ئىپادىنى گۇرۇپپىلاپ كۆپەيتىڭ. ئاۋۋال ئىپادىنى 6x^{2}+ax+bx-2 دېگەن شەكىلدە قايتا يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-12 2,-6 3,-4
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -12 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-12=-11 2-6=-4 3-4=-1
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-4 b=3
-1 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(6x^{2}-4x\right)+\left(3x-2\right)
6x^{2}-x-2 نى \left(6x^{2}-4x\right)+\left(3x-2\right) شەكلىدە قايتا يېزىڭ.
2x\left(3x-2\right)+3x-2
6x^{2}-4x دىن 2x نى چىقىرىڭ.
\left(3x-2\right)\left(2x+1\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا 3x-2 نى چىقىرىڭ.
6x^{2}-x-2=0
x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-2\right)}}{2\times 6}
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-2\right)}}{2\times 6}
-4 نى 6 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 6}
-24 نى -2 كە كۆپەيتىڭ.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 6}
1 نى 48 گە قوشۇڭ.
x=\frac{-\left(-1\right)±7}{2\times 6}
49 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{1±7}{2\times 6}
-1 نىڭ قارشىسى 1 دۇر.
x=\frac{1±7}{12}
2 نى 6 كە كۆپەيتىڭ.
x=\frac{8}{12}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{1±7}{12} نى يېشىڭ. 1 نى 7 گە قوشۇڭ.
x=\frac{2}{3}
4 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{8}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=-\frac{6}{12}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{1±7}{12} نى يېشىڭ. 1 دىن 7 نى ئېلىڭ.
x=-\frac{1}{2}
6 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-6}{12} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
6x^{2}-x-2=6\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
ئەسلى ئىپادىنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ئارقىلىق يېشىڭ. \frac{2}{3} نى x_{1} گە ۋە -\frac{1}{2} نى x_{2} گە ئالماشتۇرۇڭ.
6x^{2}-x-2=6\left(x-\frac{2}{3}\right)\left(x+\frac{1}{2}\right)
بارلىق ئىپادىنى p-\left(-q\right) دىن p+q گە ئاددىيلاشتۇرۇڭ.
6x^{2}-x-2=6\times \frac{3x-2}{3}\left(x+\frac{1}{2}\right)
ئومۇمىي مەخرەجنى تېپىش ۋە سۈرەتلەرنى ئېلىش ئارقىلىق x دىن \frac{2}{3} نى ئېلىپ، كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
6x^{2}-x-2=6\times \frac{3x-2}{3}\times \frac{2x+1}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{2} نى x گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
6x^{2}-x-2=6\times \frac{\left(3x-2\right)\left(2x+1\right)}{3\times 2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3x-2}{3} نى \frac{2x+1}{2} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
6x^{2}-x-2=6\times \frac{\left(3x-2\right)\left(2x+1\right)}{6}
3 نى 2 كە كۆپەيتىڭ.
6x^{2}-x-2=\left(3x-2\right)\left(2x+1\right)
6 بىلەن 6 دىكى ئەڭ چوڭ ئومۇمىي بۆلگۈچى 6 نى يېيىشتۈرۈڭ.