x نى يېشىش
x=1
x=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x\left(6x-6\right)=0
x نى ئاجرىتىپ چىقىرىڭ.
x=0 x=1
تەڭلىمىنى يېشىش ئۈچۈن x=0 بىلەن 6x-6=0 نى يېشىڭ.
6x^{2}-6x=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 6}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 6 نى a گە، -6 نى b گە ۋە 0 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-6\right)±6}{2\times 6}
\left(-6\right)^{2} نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{6±6}{2\times 6}
-6 نىڭ قارشىسى 6 دۇر.
x=\frac{6±6}{12}
2 نى 6 كە كۆپەيتىڭ.
x=\frac{12}{12}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{6±6}{12} نى يېشىڭ. 6 نى 6 گە قوشۇڭ.
x=1
12 نى 12 كە بۆلۈڭ.
x=\frac{0}{12}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{6±6}{12} نى يېشىڭ. 6 دىن 6 نى ئېلىڭ.
x=0
0 نى 12 كە بۆلۈڭ.
x=1 x=0
تەڭلىمە يېشىلدى.
6x^{2}-6x=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
\frac{6x^{2}-6x}{6}=\frac{0}{6}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x^{2}+\left(-\frac{6}{6}\right)x=\frac{0}{6}
6 گە بۆلگەندە 6 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-x=\frac{0}{6}
-6 نى 6 كە بۆلۈڭ.
x^{2}-x=0
0 نى 6 كە بۆلۈڭ.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{2} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{2} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{2} نىڭ كىۋادراتىنى تېپىڭ.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
كۆپەيتكۈچى x^{2}-x+\frac{1}{4}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
ئاددىيلاشتۇرۇڭ.
x=1 x=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{2} نى قوشۇڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}