x نى يېشىش
x=\frac{2z}{11}+\frac{47y}{55}
y نى يېشىش
y=\frac{55x-10z}{47}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
55x=10z+47y
47y نى ھەر ئىككى تەرەپكە قوشۇڭ.
55x=47y+10z
تەڭلىمە ئۆلچەملىك بولدى.
\frac{55x}{55}=\frac{47y+10z}{55}
ھەر ئىككى تەرەپنى 55 گە بۆلۈڭ.
x=\frac{47y+10z}{55}
55 گە بۆلگەندە 55 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x=\frac{2z}{11}+\frac{47y}{55}
10z+47y نى 55 كە بۆلۈڭ.
-47y=10z-55x
ھەر ئىككى تەرەپتىن 55x نى ئېلىڭ.
\frac{-47y}{-47}=\frac{10z-55x}{-47}
ھەر ئىككى تەرەپنى -47 گە بۆلۈڭ.
y=\frac{10z-55x}{-47}
-47 گە بۆلگەندە -47 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
y=\frac{55x-10z}{47}
10z-55x نى -47 كە بۆلۈڭ.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}