ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

a+b=-2 ab=5\left(-16\right)=-80
تەڭلىمىنى يېشىش ئۈچۈن گۇرۇپپىلاش ئارقىلىق سول تەرەپنى كۆپەيتىپ چىقىرىڭ. ئاۋۋال سول تەرەپنى 5x^{2}+ax+bx-16 شەكلىدە يېزىش كېرەك. a ۋە b نى تېپىش ئۈچۈن يېشىدىغان سىستېما بېكىتىڭ.
1,-80 2,-40 4,-20 5,-16 8,-10
ab مەنپىي، شۇڭا a بىلەن b نىڭ بەلگىسى قارىمۇقارشى. a+b مەنپىي، شۇڭا مەنپىي ساننىڭ مۇتلەق قىممىتى مۇسبەت ساننىڭكىدىن چوڭ. ھاسىلات -80 چىقىدىغان بارلىق جۈپلەرنى تىزىڭ.
1-80=-79 2-40=-38 4-20=-16 5-16=-11 8-10=-2
ھەر بىر جۈپنىڭ يىغىندىسىنى چىقىرىڭ.
a=-10 b=8
-2 دېگەن يىغىندا چىقىدىغان جۈپ ئارقىلىق يېشىلىدۇ.
\left(5x^{2}-10x\right)+\left(8x-16\right)
5x^{2}-2x-16 نى \left(5x^{2}-10x\right)+\left(8x-16\right) شەكلىدە قايتا يېزىڭ.
5x\left(x-2\right)+8\left(x-2\right)
بىرىنچى گۇرۇپپىدىن 5x نى، ئىككىنچى گۇرۇپپىدىن 8 نى چىقىرىڭ.
\left(x-2\right)\left(5x+8\right)
تارقىتىش قانۇنى بويىچە ئومۇمىي ئەزا x-2 نى چىقىرىڭ.
x=2 x=-\frac{8}{5}
تەڭلىمىنى يېشىش ئۈچۈن x-2=0 بىلەن 5x+8=0 نى يېشىڭ.
5x^{2}-2x-16=0
ax^{2}+bx+c=0 دېگەن گۇرۇپپىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادرات فورمۇلاسى ئارقىلىق يېشىشكە بولىدۇ. كىۋادرات فورمۇلاسى ئىككى خىل يېشىش ئۇسۇلى بىلەن تەمىنلەيدۇ، بىرى ± قوشۇلغاندا، يەنە بىرى ئۇ ئېلىنغاندا.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5\left(-16\right)}}{2\times 5}
بۇ تەڭلىمە ئۆلچەملىك شەكىلدە: ax^{2}+bx+c=0. كىۋادراتلىق فورمۇلا \frac{-b±\sqrt{b^{2}-4ac}}{2a} دا 5 نى a گە، -2 نى b گە ۋە -16 نى c گە ئالماشتۇرۇڭ.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5\left(-16\right)}}{2\times 5}
-2 نىڭ كىۋادراتىنى تېپىڭ.
x=\frac{-\left(-2\right)±\sqrt{4-20\left(-16\right)}}{2\times 5}
-4 نى 5 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{4+320}}{2\times 5}
-20 نى -16 كە كۆپەيتىڭ.
x=\frac{-\left(-2\right)±\sqrt{324}}{2\times 5}
4 نى 320 گە قوشۇڭ.
x=\frac{-\left(-2\right)±18}{2\times 5}
324 نىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x=\frac{2±18}{2\times 5}
-2 نىڭ قارشىسى 2 دۇر.
x=\frac{2±18}{10}
2 نى 5 كە كۆپەيتىڭ.
x=\frac{20}{10}
± پىلۇس بولغاندىكى تەڭلىمە x=\frac{2±18}{10} نى يېشىڭ. 2 نى 18 گە قوشۇڭ.
x=2
20 نى 10 كە بۆلۈڭ.
x=-\frac{16}{10}
± مىنۇس بولغاندىكى تەڭلىمە x=\frac{2±18}{10} نى يېشىڭ. 2 دىن 18 نى ئېلىڭ.
x=-\frac{8}{5}
2 نى يېيىش ۋە ئاددىيلاشتۇرۇش ئارقىلىق كەسىر \frac{-16}{10} نى ئەڭ كىچىك ھالەتكە كەلتۈرۈڭ.
x=2 x=-\frac{8}{5}
تەڭلىمە يېشىلدى.
5x^{2}-2x-16=0
بۇنىڭغا ئوخشاش كىۋادراتلىق تەڭلىمىنى كىۋادراتقا كەلتۈرۈش ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتقا كەلتۈرۈش ئۈچۈن تەڭلىمە x^{2}+bx=c دېگەن شەكىلدە بولۇشى كېرەك.
5x^{2}-2x-16-\left(-16\right)=-\left(-16\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 16 نى قوشۇڭ.
5x^{2}-2x=-\left(-16\right)
-16 دىن ئۆزىنى ئالسىڭىز 0 قالىدۇ.
5x^{2}-2x=16
0 دىن -16 نى ئېلىڭ.
\frac{5x^{2}-2x}{5}=\frac{16}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x^{2}-\frac{2}{5}x=\frac{16}{5}
5 گە بۆلگەندە 5 گە كۆپەيتىشتىن بۇرۇنقى ئەسلىگە قايتۇرىدۇ.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{16}{5}+\left(-\frac{1}{5}\right)^{2}
-\frac{2}{5}، يەنى x ئەزانىڭ كوئېففىتسېنتىنى 2 گە بۆلۈپ، -\frac{1}{5} نى چىقىرىڭ. ئاندىن تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە -\frac{1}{5} نىڭ كىۋادراتىنى قوشۇڭ. بۇ باسقۇچ ئارقىلىق تەڭلىمىنىڭ سول تەرىپى پۈتۈن سانلىق كىۋادراتقا ئايلىنىدۇ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{16}{5}+\frac{1}{25}
كەسىرنىڭ سۈرەت ۋە مەخرەجلىرىنىڭ كىۋادراتىنى تېپىش ئارقىلىق -\frac{1}{5} نىڭ كىۋادراتىنى تېپىڭ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{81}{25}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{16}{5} نى \frac{1}{25} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
\left(x-\frac{1}{5}\right)^{2}=\frac{81}{25}
كۆپەيتكۈچى x^{2}-\frac{2}{5}x+\frac{1}{25}. ئادەتتە x^{2}+bx+c پۈتۈن سانلىق كىۋادرات بولسا، ئۇنىڭ كۆپەيتكۈچىسى ھەردائىم \left(x+\frac{b}{2}\right)^{2} بولىدۇ.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{81}{25}}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنىڭ كىۋادرات يىلتىزىنى چىقىرىڭ.
x-\frac{1}{5}=\frac{9}{5} x-\frac{1}{5}=-\frac{9}{5}
ئاددىيلاشتۇرۇڭ.
x=2 x=-\frac{8}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{5} نى قوشۇڭ.